Exam 1 Advanced Geometry 2/19/21

Don't panic.

1. (a) Briefly describe an example of a model for a geometry that satisfies the elliptic parallel postulate.
(b) Briefly describe an example of a model for a geometry that satisfies the Euclidean parallel postulate.
(c) Briefly describe an example of a model for a geometry that satisfies the hyperbolic parallel postulate.
2. Explain why there's an issue with Euclid's Proposition 1, constructing an equilateral triangle given one of its sides, in the rational plane.
3. Recall the three axioms of Incidence Geometry:

- Incidence Axiom 1: For every pair of distinct points P and Q there exists exactly one line ℓ such that both P and Q lie on ℓ.
- Incidence Axiom 2: For every line ℓ there exist at least two distinct points P and Q such that both P and Q lie on ℓ.
- Incidence Axiom 3: There exist three points that do not all lie on any one line.

Consider a geometry where points are ordered pairs of real numbers as in the Cartesian Plane, but lines are circles. Explain why this satisfies or fails to satisfy each of the three axioms for an incidence geometry.
4. Let $A=(0,0)$ and $B=(3,1)$, and let ρ be the taxicab metric.
a) Describe all points on $\overline{A B}$.
b) Describe all points on $\overrightarrow{A B}$.
5. Provide good justifications in the blanks below for the corresponding statements:

Theorem: If $\triangle A B C$ is a triangle and $\overline{A B} \cong \overline{A C}$, then $\angle A B C \cong \angle A C B$

Statement	Reason
Let $\triangle A B C$ be a triangle such that $\overline{A B} \cong \overline{A C}$.	Given
We must prove that $\angle A B C \cong \angle A C B$.	Because that's what we must prove.
Let D be the point in the interior of $\angle B A C$ such that $\overrightarrow{A D}$ is the bisector of $\angle B A C$.	
There is a point E at which the ray $\overrightarrow{A D}$ intersects the segment $\overline{B C}$. Then $\triangle B A E \cong \triangle C A E$ and so $\angle A B E \cong \angle A C E$.	
This completes the proof because $\angle A C E=\angle A C B$	
and $\angle A B E=\angle A B C . \quad \square$	

