Examlet 3
 Advanced Geometry 4/21/21

1. a) State the Neutral Area Postulate.
b) State the Euclidean Area Postulate.
2. A triangle has $\alpha=32^{\circ}, A=7.0$, and $C=10.0$. Solve for the possible remaining measurements, accurate to the nearest tenth.
3. Provide good justifications in the blanks below for the corresponding statements: Proposition: If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\triangle A B C \sim \triangle D E F$, then

$$
\frac{A B}{A C}=\frac{D E}{D F}
$$

Statement:	Reason:
If $A B=D E$, then $\triangle A B C \cong \triangle D E F$ and the conclusion is evident.	
So suppose $A B \neq D E$. Either $A B>D E$ or $A B<D E$.	
Change notation, if necessary, so that $A B>D E$. Choose a point B^{\prime} on $\overline{A B}$ such that $A B^{\prime}=D E$.	
Let m be the line through B^{\prime} such that m is parallel to $\ell=\overleftrightarrow{B C}$	
and let C^{\prime} be the point at which m intersects $\overline{A C}$.	
Then $\angle A B^{\prime} C^{\prime} \cong \angle D E F$	
Then $\triangle A B^{\prime} C^{\prime} \cong \triangle D E F$	
Let n be the line through A that is parallel to ℓ and m.	
Then $A B^{\prime} / A B=A C^{\prime} / A C$ and so $D E / A B=D F / A C$.	
$D E / D F=A B / A C$ as desired.	

4. Show that in hyperbolic geometry, two triangles sharing three congruent corresponding angles must be congruent triangles.
5. Explain to Biff how we came to the conclusion that for a triangle (in the Euclidean plane)

$$
A=\frac{1}{2} b h
$$

