Exam 1 Calculus $2 \quad 2 / 2 / 22$

Each problem is worth 10 points. For full credit provide good justification for your answers.

1. Evaluate

$$
\int \frac{1}{3 x+2} d x
$$

2. Evaluate

$$
\int x \sin x d x
$$

3. Evaluate

$$
\int \cos ^{4} \theta \sin \theta d \theta
$$

4. Evaluate

$$
\int \frac{5 x}{(x+3)(x-2)} d x
$$

5. Evaluate

$$
\int \frac{x^{3}}{\sqrt{1-x^{2}}} d x
$$

6. Evaluate

$$
\int_{0}^{\pi / 2} \cos ^{2} \theta d \theta
$$

7. Bunny is a Calculus student at Enormous State University, and she's having some trouble. Bunny says "Ohmygod, Calc is tough! This partial fractal stuff is totally impossible! I think it's totally random, like, sometimes you put just A or B and some other times you put, like, $C x+D$, and there's totally no way to know which is which, it's just what the professor decides, right?"
Help Bunny out by giving a good example to illustrate when to use which kind of numerator in a partial fractions decomposition. You do not need to carry out the decomposition, just give and explain to Bunny what form the decomposition should take.
8. Evaluate

$$
\int_{0}^{5} \frac{1}{x-3} d x
$$

9. Derive the reduction formula

$$
\int(\ln x)^{n} d x=x(\ln x)^{n}-n \int(\ln x)^{n-1} d x
$$

10. Derive Line 39 from the Table of Integrals,

$$
\int \sqrt{u^{2}-a^{2}} d u=\frac{u}{2} \sqrt{u^{2}-a^{2}}-\frac{a^{2}}{2} \ln \left|u+\sqrt{u^{2}-a^{2}}\right|+C
$$

Extra Credit [5 points possible]: Derive Line 98 from the Table of Integrals,

$$
\int e^{a u} \sin b u d u=\frac{e^{a u}}{a^{2}+b^{2}}(a \sin b u-b \cos b u)+C
$$

(feel free to warm up with the basic version where a and b are both 1).

