Exam $4 \quad$ Calculus $2 \quad 4 / 21 / 22$

Each problem is worth 10 points. For full credit provide good justification for your answers.

1. Convert the point with rectangular coordinates $(-5,5)$ to polar coordinates (r, θ).
2. Find an equation for the ellipse shown:

3. Consider the curve defined by the parametric equations $x(t)=t^{3}-5 t$ and $y(t)=8 t^{2}$. Set up an integral for the length of the loop of this curve.
4. Set up an integral for the area of the region inside the curve with polar equation $r=6 \sin (5 \theta)$.
5. Identify the graph of $y^{2}-x^{2}-10 y+4 x-15=0$ as a parabola, hyperbola, or ellipse, give coordinates of its vertices, and sketch a decent graph.
6. Write an integral for the area of the region inside the inner loop of $r=1+2 \cos (\theta)$.
7. Bunny is a Calculus student at Enormous State University, and she's having some trouble. Bunny says "Ohmygod. I am just totally confused. So like, I know with normal stuff, like, negative x is like the left half, right? And negative y is the bottom half, right? But I asked what half is negative with, like, this new r thingy, right? And the professor just looked at me funny, in front of like 300 people in the lecture, right? So I pretty much died and he just went on. I think I better drop."

Help Bunny out by explaining where points with negative r-values can be located.
8. Find the exact coordinates of all points on the graph of the curve with parametric equations $x(t)=t^{3}-6 t, y(t)=t^{2}-5$ where the tangent line is vertical.
9. Find the exact (x, y) coordinates of all point(s) with horizontal tangent lines on the cardioid with polar equation $r=1+\cos \theta$.
10. Find the area enclosed by the loop of the curve with parametric equations $x(t)=$ $t^{3}-3 t, y(t)=t^{2}+t+1$

Extra Credit [5 points possible]: [Rogawski/Adams] For $a>0$, a lemniscate curve is the set of points such that the product of the distances from P to $(a, 0)$ and $\left(-a, 0\right.$ is a^{2}. Show that the equation of the lemniscate is

$$
\left(x^{2}+y^{2}\right)^{2}=2 a^{2}\left(x^{2}-y^{2}\right)
$$

