Examlet 4 Foundations of Advanced Math 4/15/22

1. (a) State the definition of a reflexive relation.
(b) Give an example of a relation on the set $\{a, b, c\}$ which is reflexive but not symmetric and not transitive.
2. (a) Suppose that \sim is an equivalence relation on the set $A=\{a, b, c, d, e\}$ and that $[a]=\{a, b, c\}$ and $[d]=\{d, e\}$. Write the partition Π corresponding to \sim.
(b) Suppose that Π is the partition $\{\{1\},\{2,4\},\{3,5\}\}$ of the set $A=\{1,2,3,4,5\}$. Find the relation \sim corresponding to Π, expressing it as a set of ordered pairs.
3. Let S be a set and Π a partition of S. Let \sim be a relation on S defined by $a \sim b \Leftrightarrow \exists P \in \Pi$ for which $a, b \in P$.
(a) Show \sim is a reflexive relation.
(b) Show \sim is a symmetric relation.
(c) Show \sim is a transitive relation.
4. (a) Give all (unlabeled) graphs with $n \leq 4$ vertices.
(b) Give all (unlabeled) trees with $n \leq 4$ vertices.
5. Say that two vertices v_{1} and v_{2} of a graph G are propinquous iff there exists a walk between them that contains exactly one vertex other than v_{1} and v_{2}.
(a) Is the relation of being propinquous reflexive?
(b) Is the relation of being propinquous symmetric?
(c) Is the relation of being propinquous transitive?
