1. (a) State the definition of a reflexive relation.

(b) Give an example of a relation on the set {*a*, *b*, *c*} which is reflexive but not symmetric and not transitive.

2. (a) Suppose that ~ is an equivalence relation on the set $A = \{a, b, c, d, e\}$ and that $[a] = \{a, b, c\}$ and $[d] = \{d, e\}$. Write the partition Π corresponding to ~.

(b) Suppose that Π is the partition {{1}, {2,4}, {3,5}} of the set $A = \{1, 2, 3, 4, 5\}$. Find the relation ~ corresponding to Π , expressing it as a set of ordered pairs.

- 3. Let *S* be a set and Π a partition of *S*. Let ~ be a relation on *S* defined by $a \sim b \Leftrightarrow \exists P \in \Pi$ for which $a, b \in P$.
 - (a) Show \sim is a reflexive relation.

(b) Show \sim is a symmetric relation.

(c) Show \sim is a transitive relation.

4. (a) Give all (unlabeled) graphs with $n \le 4$ vertices.

(b) Give all (unlabeled) trees with $n \le 4$ vertices.

- 5. Say that two vertices v_1 and v_2 of a graph *G* are **propinquous** iff there exists a walk between them that contains exactly one vertex other than v_1 and v_2 .
 - (a) Is the relation of being propinquous reflexive?

(b) Is the relation of being propinquous symmetric?

(c) Is the relation of being propinquous transitive?