
Problem Set 8 Foundations Due 4/4/22

Four of these problems will be graded (my choice, not yours!), with each problem worth 5 points.
Clear and complete justification is required for full credit. You are welcome to discuss these
problems with anyone and everyone, but must write up your own final submission without
reference to any sources other than the textbook and instructor.

1. (From Devlin, Sets,Functions, and Logic) The Hilbert Hotel, named after the famous German
mathematician (and set theory pioneer) David Hilbert, has an inifinte number of rooms. The
rooms are numbered 1, 2, 3, etc. One evening — it was a Super Bowl weekend — all the
rooms were booked. But late that night, an unexpected VIP turned up and asked for a room.
Fortunately, the desk clerk had been reading Keith Devlin’s book Sets,Functions, and Logic.
With a bit of rearranging, the clerk was able to arrange matters so that the VIP got a room
and so did everyone else. How did he do it?

2. (From Devlin, Sets,Functions, and Logic) The following evening the rooms were all still
booked, but an infinite number of new guests arrived, all without reservations. The clever
desk clerk was again able to arrange matters so that all the new arrivals got rooms and so
too did the guests who had advance reservations. What did the clerk do this second night?

3. Consider the relation ∼ on Z given by x ∼ y iff 5 divides x − y. Determine whether this
relation is reflexive, symmetric, and transitive.

4. Consider the relation ∼ on Z given by x ∼ y iff 5 divides x + y. Determine whether this
relation is reflexive, symmetric, and transitive.

5. Let S = {1, 2, 3, 4, 5}. Then R = {(1, 1), (1, 3), (2, 2), (2, 5), (3, 1), (3, 3), (4, 4), (5, 2), (5, 5)} is an
equivalence relation on S. Write the equivalence classes of S associated with R.

6. Let S = {1, 2, 3, 4}. Suppose that ∼ is an equivalence relation with 1 ∼ 4. What are the possible
partitions associated with ∼?

7. Do the BinaryGateway on WeBWorK, available via

http:webwork.coe.edu/webwork2/MTH-215/BinaryGateway/ .

8. Let S = {a, b, c, d, e} and Π = {{a}, {b, d}, {c, e}}. Write the relation R corresponding to the
partition Π.

9. Let S be a set and Π a partition of S defined by a ∼ b⇔ ∃P ∈ Π for which a, b ∈ P. Then Π is
a reflexive relation.

10. Let S be a set and Π a partition of S defined by a ∼ b⇔ ∃P ∈ Π for which a, b ∈ P. Then Π is
a symmetric relation.

11. Let S be a set and Π a partition of S defined by a ∼ b⇔ ∃P ∈ Π for which a, b ∈ P. Then Π is
a transitive relation.


