Midterm Exam ASet Theory & Topology3/11/22

Do questions 1 through 7 and pick three of the remaining (lettered) questions for grading (check boxes of those you want graded or I roll dice). Each problem is worth 10 points. Show good justification for full credit. Don't panic.

1. (a) State the definition of a topology.

(b) Is the collection of intervals of the form (a, a + 2) where $a \in \mathbb{R}$ a topology for \mathbb{R} ? Why or why not?

2. Show that the composition of continuous functions is continuous

3. Show that the intersection of two closed sets is closed.

4. Suppose that $f : X \to Y$ is a function and \mathscr{B} a basis for Y. Show that f is continuous iff the inverse image of any element of \mathscr{B} is open in X.

- 5. Let $P = (0, \infty)$. Determine whether each statement is true or false and give a good justification of your answers:
 - (a) *P* is open in $(\mathbb{R}, \mathcal{U})$.

(b) $P \times P$ is open in \mathbb{R}^2 with the product topology.

(c) \times {*P* : $\alpha \in \mathbb{N}$ } is open in \times { \mathbb{R} : $\alpha \in \mathbb{N}$ } with the product topology.

6. Show that the continuous image of a connected set is connected.

7. (a) State the definition of a compact set.

(b) Give an example of a open cover for $(\mathbb{R}, \mathscr{U})$ which has no finite subcover.

 \Box A. Determine, with justification, if the function $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x & \text{if } x \ge 1\\ -2 & \text{if } x < 1 \end{cases}$$

is

- (a) $\mathscr{U} \mathscr{U}$ continuous
- (b) $\mathscr{U} \mathscr{H}$ continuous
- (c) $\mathscr{U} \mathscr{C}$ continuous
- (d) $\mathscr{H} \mathscr{U}$ continuous
- (g) $\mathscr{C} \mathscr{C}$ continuous

- \square B. What is Cl((0, 1)) in
 - (a) $(\mathbb{R}, \mathcal{U})$

(b) $(\mathbb{R}, \mathcal{H})$

(c) $(\mathbb{R}, \mathscr{C})$

(d) $(\mathbb{R}, \mathcal{D})$

(g) $(\mathbb{R}, \mathscr{I})$ (the indiscrete topology)

 \Box C. Is (\mathbb{R} , \mathscr{U}) homeomorphic to (\mathbb{R} , \mathscr{H})? Justify your answer well.

□ D. Let \mathscr{B} be a base for a topological space (*X*, \mathscr{T}) and let *A* ⊆ *X*. Show that the collection $\{B \cap A : B \in \mathscr{B}\}$ is a base for some topology on *A*.

 \Box E. Let (*X*, \mathscr{T}) be a topological space and let $A \subseteq X$. Then *A* is closed iff A = Cl(A).

 \square F. $A \times B$ is connected iff A and B are connected.