You are expected to do the following problems to a high standard (i.e., at least well enough to be published in a textbook) for full credit. Ten of these problems will be selected (by Jon) for grading, with each worth 2 points.

1. [Baker Ch 2 R1] The empty set is a closed subset of \mathbb{R} regardless of the topology on \mathbb{R}.
2. [Baker Ch 2 R2] Any open interval is an open subset of \mathbb{R} regardless of the topology on \mathbb{R}.
3. [Baker Ch 2 R3] Any closed interval is a closed subset of \mathbb{R} regardless of the topology on \mathbb{R}.
4. [Baker Ch 2 R4] A half-open interval of the form $[a, b)$ is neither an open set nor a closed set regardless of the topology on \mathbb{R}.
5. [Baker Ch 2 R5] If A is a subset of a topological space, then $A \subseteq \mathrm{Cl}(A)$.
6. [Baker Ch 2 R6] If A is a subset of a topological space, then $A^{\prime} \subseteq A$.
7. [Baker Ch 2 R7] For any closed subset A of a topologoical space, $A^{\prime} \subseteq A$.
8. [Baker Ch 2 R8] If A is a subset of a topological space, then $\operatorname{Int}(A) \subseteq A$.
9. [Baker Ch 2 R9] For any subset A of a topological space, $\operatorname{Bd}(A) \subseteq A$.
10. [Baker Ch 2 R10] If A is a subset of a topological space, then $\operatorname{Bd}(A) \subseteq \mathrm{Cl}(A)$.
11. [Baker Ch 2 R11] If A is a closed subset of a topological space, then $\operatorname{Bd}(A) \subseteq A$.
12. [Baker Ch 2 R12] If A is a subset of a topological space, then $\operatorname{Int}(A) \subseteq \operatorname{Cl}(A)$.
13. [Baker Ch 2 R13] The point 1 is a limit point of the set $[0,1)$ regardless of the topology on \mathbb{R}.
14. [Baker Ch 2 R14] The point 2 is not a limit point of the set $[0,1$) regardless of the topology on \mathbb{R}.
15. [Baker Ch 2 R15] For any subset A of a topological space, $\operatorname{Ext}(A)=X-A$.
16. [Baker Ch 2 R16] For any closed subset A of a topological space, $\operatorname{Ext}(A)=X-A$.
17. [Baker Ch 2 R17] The collection $\mathscr{B}=\{\{x\}: x \in \mathbb{R}\}$ is a base for a topology on \mathbb{R}.
18. [Baker Ch 2 R18] The collection $\mathscr{B}=\{\{x\}: x \in \mathbb{R}\}$ is a base for the usual topology on \mathbb{R}.
19. [Baker Ch 2 R19] In a space (X, \mathscr{T}) any collection of open sets whose union equals X and that is closed under finite intersection is a base for \mathscr{T}.
20. [Baker Ch 2 R20] There exists a topological space (X, \mathscr{T}) such that there is no base for \mathscr{T}.
21. [Baker Ch 2 R21] There exists a topological space (X, \mathscr{T}) for which there is more than one base for \mathscr{T}.
