Problem Set 4Set Theory & TopologyDue 3/7/22

You are expected to do the following problems to a high standard (i.e., at least well enough to be published in a textbook) for full credit. Ten of these problems will be selected (by Jon) for grading, with each worth 2 points.

- 1. [Baker 3.2.2]
- 2. [Baker Ch 3 R12] If a function $f : \mathbb{R} \to \mathbb{R}$ is $\mathscr{C} \mathscr{U}$ continuous, then f is $\mathscr{U} \mathscr{U}$ continuous.
- 3. [Baker Ch 3 R13] Any two discrete topological spaces are homeomorphic.
- 4. [Baker Ch 3 R14] Any one-to-one, onto function between two discrete topological spaces is a homeomorphism.
- 5. [Baker Ch 3 R17] If (X, \mathscr{T}) and (Y, \mathscr{S}) are homeomorphic topological spaces, then any one-to-one function from X onto Y is a homeomorphism.
- 6. Prove Theorem 10 in §4.1: Let (X, \mathscr{T}) and (Y, \mathscr{S}) be topological spaces. If *A* and *B* are closed subsets of *X* and *Y*, respectively, then $A \times B$ is a closed subset of $X \times Y$.
- 7. Prove Lemma 5.1.10: Let *U* be a nonempty subset of \mathbb{R} that is bounded below and let *n* be the greatest lower bound for *U*. If *I* is any open interval containing *m*, then $I \cap U \neq \emptyset$.
- 8. [Baker 5.2.7] Complete the proof of Theorem 5.2.1.
- 9. Prove that topological spaces (X, \mathcal{T}) and (Y, \mathcal{S}) are connected iff $X \times Y$ with the product topology is connected.
- 10. Prove Theorem 5.3.4.