Exam 3 Calculus 2 3/31/23

Each problem is worth 10 points. For full credit give good justification for your answers.

1. Determine the exact sum of the geometric series

$$
1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\ldots
$$

2. Find the first 3 partial sums of the series

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)}
$$

3. Write the $5^{\text {th }}$ degree MacLaurin polynomial for $f(x)=\sin x$.
4. Determine whether the series $\sum_{n=1}^{\infty} \frac{2+(-1)^{n}}{\sqrt{n}}$ converges or diverges.
5. Determine whether the series $\sum_{n=2}^{\infty} \frac{1}{n^{3}-1}$ converges or diverges.
6. Write the 4th degree Taylor polynomial for $f(x)=\ln x$ centered at $x=1$.
7. Bunny is a Calculus student at Enormous State University, and she's having some trouble. Bunny says "Ohmygawd! This series stuff is literally turning my brain into a donut! So, like, they had us find a Taylor thingy for ln, right? And it was centered at 1, right? So then they asked us to use it for $\ln 2$ and $\ln 4$, right? And the answer for $\ln 4$ was really far off, right? And they asked us, like, how high the degree needed to be to make it better, right? And I just cried."

Help Bunny out by explaining what happens when using higher and higher degree Taylor polynomials like this.
8. Find the radius of convergence of $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$.
9. Find the interval of convergence of $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$.
10. Use a Maclaurin polynomial of degree at least 4 to approximate $\int_{0}^{0.2} e^{-x^{2}} d x$.

Extra Credit [5 points possible]: If two series both diverge, does their sum have to diverge?

