Examlet 4a Foundations of Advanced Math 4/12/24

1. Consider the relation \sim on \mathbb{Z} defined by $x \sim y \Leftrightarrow x-y \equiv_{3} 3$. Determine whether \sim is an equivalence relation.
2. Let $S=\{a, b, c, d, e\}$, and let $\sim=\{(a, a),(b, b),(b, d),(b, e),(c, c),(d, b),(d, d),(d, e),(e, b),(e, d),(e, e)\}$
(a) Give the equivalence classes of \sim.
(b) Give the partition associated with \sim.
3. Let S be a set and Π a partition of S. Let \sim be a relation on S defined by $a \sim b \Leftrightarrow \exists P \in \Pi$ for which $a, b \in P$.
(a) Show \sim is a reflexive relation.
(b) Show \sim is a symmetric relation.
(c) Show \sim is a transitive relation.
4. Regarding the function $f: A \rightarrow B$ as a subset of $A \times B$,
(a) State the definition of f being injective.
(b) State the definition of f being surjective.
5. Call two vertices v_{1} and v_{2} in a graph G barely connected iff there exists a walk from v_{1} to v_{2}, but there exists an edge in G such that if that edge were removed, then there no longer exists a walk from v_{1} to v_{2}. Determine whether the relation of being barely connected is reflexive, symmetric, and transitive.
