1. Consider the relation \sim on \mathbb{Z} defined by $x \sim y \Leftrightarrow x - y \equiv_3 3$. Determine whether \sim is an equivalence relation.

- 2. Let $S = \{a, b, c, d, e\}$, and let $\sim = \{(a, a), (b, b), (b, d), (b, e), (c, c), (d, b), (d, d), (d, e), (e, b), (e, d), (e, e)\}$
 - (a) Give the equivalence classes of \sim .

(b) Give the partition associated with \sim .

3.	Let <i>S</i> be a set and Π a partition of <i>S</i> . Let \sim be a relation on <i>S</i> defined by $a \sim b \Leftrightarrow \exists P \in \Pi$ for which $a, b \in P$.
	(a) Show \sim is a reflexive relation.
	(b) Show ∼ is a symmetric relation.
	(b) Show ~ is a symmetric relation.
	(c) Show ∼ is a transitive relation.

4	Regarding the function	$f: A \to B$ as a subset of $A \times B$,
т.	regarding the function	$11 \rightarrow D$ as a subset of $11 \land D$,

(a) State the definition of f being injective.

(b) State the definition of f being surjective.

5.	Call two vertices v_1 and v_2 in a graph G barely connected iff there exists a walk from v_1 to v_2 , but there exists an edge in G such that if that edge were removed, then there no longer exists a walk from v_1 to v_2 . Determine whether the relation of being barely connected is reflexive, symmetric, and transitive.