Examlet 4bFoundations of Advanced Math4/12/24

1. Consider the relation ~ on \mathbb{Z} defined by $x \sim y \Leftrightarrow x - y \equiv_5 3$. Determine whether ~ is an equivalence relation.

- 2. Let $S = \{a, b, c, d, e\}$, and let $\sim = \{(a, a), (a, b), (b, a), (b, b), (c, c), (d, d), (d, e), (e, d), (e, e)\}$.
 - (a) Give the equivalence classes of \sim .

(b) Give the partition associated with \sim .

- 3. Let *S* be a set and Π a partition of *S*. Let ~ be a relation on *S* defined by $a \sim b \Leftrightarrow \exists P \in \Pi$ for which $a, b \in P$.
 - (a) Show \sim is a reflexive relation.

(b) Show \sim is a symmetric relation.

(c) Show \sim is a transitive relation.

- 4. Regarding the function $f : A \rightarrow B$ as a subset of $A \times B$,
 - (a) State the definition of f being injective.

(b) State the definition of f being surjective.

5. Call two vertices v_1 and v_2 in a graph *G* evenly connected iff the shortest walk from v_1 to v_2 has even length (where the length of a walk is the number of edges in that walk). Determine whether the relation of being evenly connected is reflexive, symmetric, and transitive.