Each problem is worth 5 points. For full credit indicate clearly how you reached your answer.

1. If \(y = x^3 \cos x \), find \(y' \).

 \[
 y' = 3x^2 \cos x + x^3 \sin x
 \]

 \[
 y' = 3x^2 \cos x - x^3 \sin x
 \]

 Product Rule

 \[
 f(x) = x^3 \\
 f'(x) = 3x^2 \\
 g(x) = \cos x \\
 g'(x) = -\sin x
 \]

 \[
 f'(x)g(x) = 3x^2 \cos x \\
 f(x)g'(x) = x^3 (-\sin x)
 \]

 \[
 f'(x)g(x) + f(x)g'(x) = 3x^2 \cos x + x^3 (-\sin x)
 \]

2. If \(f(x) = \sqrt{x^2 + 1} \), find \(f'(x) \).

 \[
 f(x) = (x^2 + 1)^{\frac{1}{2}}
 \]

 \[
 f'(x) = \frac{1}{2} (x^2 + 1)^{-\frac{1}{2}} (2x)
 \]

 \[
 f'(x) = \frac{1}{2} \cdot \frac{2x}{(x^2 + 1)^{\frac{1}{2}}}
 \]

 \[
 f'(x) = \frac{x}{\sqrt{x^2 + 1}}
 \]

 To find this derivative put in expanded form then use chain rule.