Each problem is worth 5 points. Clear and complete justification is required for full credit.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>g(x)</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

1. Use the table above to evaluate
 a) \(f \circ g(2) = f(g(2)) = f(4) = 2 \)
 b) \(g \circ f(2) = g(f(2)) = g(6) = 5 \)

2. Find an exponential function for the form \(f(x) = C \cdot a^x \) passing through the points \((0,3)\) and \((2,12)\).

 Since it goes through \((0,3)\):
 \[
 (3) = C \cdot a^0 \\
 \therefore C = 3
 \]

 Since it goes through \((2,12)\):
 \[
 (12) = 3 \cdot a^2 \\
 4 = a^2 \\
 \therefore a = 2
 \]

 \(f(x) = 3 \cdot 2^x \)
3. Evaluate \(\log_2 \frac{1}{4} \) exactly.

\[
\log_2 \frac{1}{4} = \log_2 2^{-2} = -2
\]

means "What's the exponent you'd put on 2 to get..."

4. Evaluate \(\ln \sqrt{e} \) exactly.

\[
\ln \sqrt{e} = \log_e e^{\frac{1}{2}} = \frac{1}{2}
\]

means "What's the exponent you'd put on e to get..."