Exam 2 Real Analysis 1 11/25/2002

Each problem is worth 10 points. Show adequate justification for full credit. Don't panic.

1. State the definition of the limit L of a real-valued function f as x approaches ∞.
2. State the Extreme Value Theorem.
3. State the Mean Value Theorem.
4. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is discontinuous, but such that $|f(x)|$ is continuous.
5. Prove or give a counterexample: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function for which f^{\prime} is bounded, then f is bounded.
6. Give an example of a function $f:(0,1) \rightarrow \mathbb{R}$ for which $f(x)$ is non-zero for infinitely many points in $(0,1)$, but $\lim _{x \rightarrow a} f(x)=0$ for all $\mathrm{a} \in(0,1)$.
7. Prove or give a counterexample: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function, $f(-1)=3$ and $f(1)=3$, there must be a point in the interval $(-1,1)$ where f^{\prime} is zero.
8. Prove that $f(x)=1 / x^{3}$ is continuous at $x=2$.
9. Prove that if $\lim _{x \rightarrow a} f(x)=\mathrm{A}$ and $\lim _{x \rightarrow a} g(x)=\mathrm{B}$, then $\lim _{x \rightarrow a}(f-g)(x)=\mathrm{A}-\mathrm{B}$.
10. Prove or give a counterexample: if $f: \mathbb{R} \rightarrow \mathbb{R}$ is an odd differentiable function, then f^{\prime} is even.

Extra Credit (up to 5 points possible): Prove that $(\ln \mathrm{x})^{\prime}=1 / \mathrm{x}$.

