Each problem is worth 0 points, this time at least.

1. State the defin ition of the limit of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at a point a.
2. State the definition of the limit of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ as x ap proaches in finity.
3. State the definition of continuity of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at a point a.
4. State the definition of the derivative of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at a point a.
5. State the Intermediate Value Theorem.
6. State Rolle's Theorem.
7. State the Mean Value Theorem.
8. Prove that $\lim _{x \rightarrow \infty} \frac{1}{x^{2}}$ exists.
9. Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ which is discontinuous at every point but for which $|f(x)|$ is differentiable at every point.
10. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are both continuous functions, then $(f+g)$ is also continuous.

Fake Quiz $2 \quad$ Real Analysis $1 \quad 11 / 18 / 2002$
Each problem is worth 0 points, this time at least.

1. State the definition of the limit of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at a point a.
2. State the definition of the limit of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ as x ap proaches in finity.
3. State the definition of continuity of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at a point a.
4. State the definition of the derivative of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at a point a.
5. State the Intermediate Value Theorem.
6. State Rolle's Theorem.
7. State the Mean Value Theorem.
8. Prove that $\lim _{x \rightarrow \infty} \frac{1}{x^{2}}$ exists.
9. Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ which is discontinuous at every point but for which $|f(x)|$ is differentiable at every point.
10. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are both continuous functions, then $(f+g)$ is also continuous.
