Each problem is worth 0 points, this time at least.

1. Give an example of a function $f:\mathbb{R} \rightarrow \mathbb{R}$ which is bounded.

2. Give an example of a function $f:\mathbb{R} \to \mathbb{R}$ which is unbounded.

3. Give an example of a function $f:\mathbb{R} \to \mathbb{R}$ for which the limit as x approaches infinity does not exist.

4. Give an example of a function $f:\mathbb{R} \to \mathbb{R}$ for which the limit as x approaches infinity is 8.

5. Prove or give a counterexample: Any continuous function for which f'(-1)=2 and f'(1)=-3 has a zero.

6. Prove that if f(x) is a differentiable function and c is a constant, then (cf(x))'=cf'(x).

7. Prove that $f(x) = 1/x^2$ is continuous at x=2.

8. Prove that $f(x) = 1/x^2$ is differentiable at x=2.

9. Prove that if $\lim_{x \to a} f(x) = A$ and $\lim_{x \to a} g(x) = B$, then $\lim_{x \to a} (f - g)(x) = A - B$.

10. Give an example of a function $f:\mathbb{R} \to \mathbb{R}$ which is continuous but not differentiable on any interval of length greater than 1.