Problem Set 9 Real Analysis 1 Due 12/6/2002

Each problem is worth 5 points. Adequate demonstration is required for full credit.

1. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ for which an upper sum on $[0,1]$ with four subdivisions gives three times the value of $\int_{0}^{1} f d x$.
2. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ for which an lower sum on $[0,1]$ with four subdivisions is zero even though the value of $\int_{0}^{1} f d x$ is not zero.
3. Prove or give a counterexample: If functions f and g are not Riemann integrable, then $f+g$ is not Riemann integrable.
4. Prove or give a counterexample: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function, then f is Riemann integrable on any interval $[\mathrm{a}, \mathrm{b}]$.
5. Prove or give a counterexample: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a Riemann integrable function on any interval [a, b], then f is differentiable.
6. Prove that a constant function $f(x)=c$, for $c \in \mathbb{R}$, is Riemann integrable on any interval $[a, b]$.
