Exam 2 Calculus 3 10/1/2003

Each problem is worth 10 points. Show adequate justification for full credit. Please circle all answers and keep your work as legible as possible. It's a slippery slope.

1. State the formal definition of the partial derivative of the function $f(x, y)$ with respect to y.
2. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{x^{2}+y^{2}}$ does not exist.
3. If $\mathbf{v}=<-5,12>$ and $f(x, y)=4 x-x y^{2}$, what is the directional derivative of f in the direction of \mathbf{v} ?
4. If $w=f(x, y, z), x=x(t), y=y(t)$, and $z=z(t)$, state the appropriate version of the chain rule for $\frac{d w}{d t}$. Make it clear which of your derivatives are partials.
5. If $f(x, y)=x^{3} y-y^{2}$, in which direction is the directional derivative at the point $(-1,2)$ greatest, and what is the value of that directional derivative?
6. Find the point on the plane $x+y+z=1$ closest to the point $(3,0,0)$.
7. Bunny is a calc 3 student at a large state university and she's having some trouble. Bunny says "Ohmygod, I am so totally confused by this class. I mean, I can work out a lot of the problems, but I totally don't understand what any of it means. I guess it doesn't really matter, since our exams are all multiple choice, but it really seems like some day I might need to know why some of this stuff works. Like, I totally know that when the question says to find the direction of greatest increase, you figure out the gradient thing and that's the answer. But why? I have no clue, even if I'm getting an A."

Explain clearly to Bunny why the gradient is connected to a direction of greatest increase.
8. Find the maximum value(s) of the function $f(x, y)=x^{2}+2 y^{2}$ subject to the constraint $x^{2}+y^{2}=4$.
9. For which values of b is $f(x, y)=x^{2}+b x y+y^{2}$ a hyperbolic paraboloid?
10. Will an ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ necessarily have a point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ where its tangent plane has a normal vector parallel to $<1,1,1>$? How do you know?

Extra Credit (5 points possible):
Generalize your answer to problem 6 for a point of the form $(a, 0,0)$.

