Exam 3 Calculus 3 10/29/2003

Each problem is worth 10 points. Show adequate justification for full credit. Please circle all answers and keep your work as legible as possible.

$$
x=\rho \sin \phi \cos \theta \quad y=\rho \sin \phi \sin \theta \quad z=\rho \cos \phi
$$

1. If the function $h(x, y)=-2 x+3 y+2000$ gives the density of field mice per square mile in Kansas (where Kansas is taken to be a rectangle with its lower left corner at the origin and other vertices at $(400,0),(400,200)$, and $(0,200))$, write an integral for the total number of field mice in Kansas.
2. Set up an iterated integral for the area of the region inside $x^{2}+y^{2}=9$, outside $x^{2}+y^{2}=4$, above $y=0$, and below $y=x$.
3. Set up iterated integrals for \bar{z}, the z coordinate of the center of mass of the first-octant portion of a sphere with radius 3 and uniform density k.
4. Set up an iterated integral for the volume of the tetrahedron with vertices $(0,0,0),(2,0,0)$, $(0,3,0)$, and $(0,0,6)$.
5. Set up an iterated integral for the surface area of the portion of the paraboloid $z=x^{2}+y^{2}$ below the plane $z=9$.
6. Evaluate $\int_{0}^{4} \int_{\sqrt{y}}^{2} \sqrt{4+x^{3}} d x d y$ exactly.
7. Compute the Jacobian of the transformation $x=\frac{1}{3}(u+v), y=\frac{1}{3}(v-2 u)$.
8. Biff is having some trouble with iterated integrals. Biff says "Man, we had this quiz and I know I did it wrong, 'cause I worked out this double integral and got zero. Volume can't be zero, so I must have screwed up, but I went over it twenty times and I have no idea what was wrong. It wasn't that complicated, either, the thing we integrated was just x, so I don't know how I messed up."

Explain clearly to Biff whether zero is automatically a wrong answer for a double integral where the integrand is x, and why.
9. Evaluate $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} 2 d z d y d x$ exactly.
10. Set up an iterated integral to find the volume of the solid in the first octant bounded by the elliptic cylinder $y^{2}+4 z^{2}=4$ and the plane $y=x$.

Extra Credit (5 points possible):
Set up an iterated integral and use it to find the surface area of a sphere with radius R.

