Each problem is worth zero points, but there is a chance you'll learn some math.

- 1. Find the x coordinate of the center of mass of the region bounded by $y = 9 x^2$ and the x axis (think first about what it should be).
- 2. Find the x coordinate of the center of mass of the right-hand portion of the region bounded by $y = x^3$ and y = x.
- 4. Find the x coordinate of the center of mass of the region between $y = x^3$ and the line tangent to it at (1,1).
- 5. Find the x coordinate of the center of mass of the portion of the circle $x^2 + y^2 = 4$ which lies to the right of the line x = 1.
- 6. Find the x coordinate of the center of mass of the region bounded between y = 1/x, $y = 1/x^2$, and x = 2.
- 7. Find the x coordinate of the center of mass of the region between $x = 5y y^2$ and y = x.
- 8. The curves $y = \sin x$ and $y = \cos x$ intersect infinitely many times. Find the x coordinate of the center of mass of one of the regions bounded between them.