Bonus Homework for §8.3

Each problem is worth zero points, but there is a chance you'll learn some math.

1. Find the x coordinate of the center of mass of the region bounded by $y=9-x^{2}$ and the x axis (think first about what it should be).
2. Find the x coordinate of the center of mass of the right-hand portion of the region bounded by $y=x^{3}$ and $y=x$.
3. Find the x coordinate of the center of mass of the region between $y=x^{3}$ and the line tangent to it at $(1,1)$.
4. Find the x coordinate of the center of mass of the portion of the circle $x^{2}+y^{2}=4$ which lies to the right of the line $x=1$.
5. Find the x coordinate of the center of mass of the region bounded between $y=1 / x, y=1 / x^{2}$, and x $=2$.
6. Find the x coordinate of the center of mass of the region between $x=5 y-y^{2}$ and $y=x$.
7. The curves $y=\sin x$ and $y=\cos x$ intersect infinitely many times. Find the x coordinate of the center of mass of one of the regions bounded between them.
