Bonus Homework for §8.3 Calculus 2 9/21/2004

Each problem is worth zero points, but there is a chance you'll learn some math.

- 1. Find the x coordinate of the center of mass of the region bounded by $y = 9 x^2$ and the x axis (think first about what it should be). 0
- 2. Find the y coordinate of the center of mass of the region bounded by $y = 9 x^2$ and the x axis. 3.6
- 3. Find the *x* coordinate of the center of mass of the right-hand portion of the region bounded by $y = x^3$ and y = x. 8/15
- 4. Find the *x* coordinate of the center of mass of the region between $y = x^3$ and the line tangent to it at (1,1). -4/5
- 5. Find the *x* coordinate of the center of mass of the portion of the circle $x^2 + y^2 = 4$ which lies to the right of the line x = 1. $\frac{6\sqrt{3}}{4\pi 3\sqrt{3}} \approx 1.41$
- 6. Find the *x* coordinate of the center of mass of the region bounded between y = 1/x, $y = 1/x^2$, and x = 2. $\frac{2 2 \ln 2}{2 \ln 2 1} \approx 1.59$
- 7. Find the x coordinate of the center of mass of the region between $x = 5y y^2$ and y = x. ≈ 2.64
- 8. The curves $y = \sin x$ and $y = \cos x$ intersect infinitely many times. Find the x coordinate of the center of mass of one of the regions bounded between them. $3\pi/4$