1. A detective finds a murder victim at 9am, at which time the body's temperature is measured to be 90.3° . One hour later, the body's temperature is measured to be 89.0° . The temperature in the room has been maintained at a constant 68.0° .¹

a) Write a differential equation for the body's temperature after t hours have passed.

- b) Find a general solution to your differential equation.
- c) Find a particular solution to your differential equation satisfying the conditions given.

2. Do problem #20 from §11.5.

3. Do problem #22 from §11.5.

¹This problem shamelessly stolen from Hughes-Hallet 1st, p. 511.

1. A detective finds a murder victim at 9am, at which time the body's temperature is measured to be 90.3° . One hour later, the body's temperature is measured to be 89.0° . The temperature in the room has been maintained at a constant 68.0° .¹

a) Write a differential equation for the body's temperature after t hours have passed.

- b) Find a general solution to your differential equation.
- c) Find a particular solution to your differential equation satisfying the conditions given.

2. Do problem #20 from §11.5.

3. Do problem #22 from §11.5.

¹This problem shamelessly stolen from Hughes-Hallet 1st, p. 511.

1. A detective finds a murder victim at 9am, at which time the body's temperature is measured to be 90.3° . One hour later, the body's temperature is measured to be 89.0° . The temperature in the room has been maintained at a constant 68.0° .¹

a) Write a differential equation for the body's temperature after t hours have passed.

- b) Find a general solution to your differential equation.
- c) Find a particular solution to your differential equation satisfying the conditions given.

2. Do problem #20 from §11.5.

3. Do problem #22 from §11.5.

¹This problem shamelessly stolen from Hughes-Hallet 1st, p. 511.

1. A detective finds a murder victim at 9am, at which time the body's temperature is measured to be 90.3° . One hour later, the body's temperature is measured to be 89.0° . The temperature in the room has been maintained at a constant 68.0° .¹

a) Write a differential equation for the body's temperature after t hours have passed.

- b) Find a general solution to your differential equation.
- c) Find a particular solution to your differential equation satisfying the conditions given.

2. Do problem #20 from §11.5.

3. Do problem #22 from §11.5.

¹This problem shamelessly stolen from Hughes-Hallet 1st, p. 511.

1. A detective finds a murder victim at 9am, at which time the body's temperature is measured to be 90.3° . One hour later, the body's temperature is measured to be 89.0° . The temperature in the room has been maintained at a constant 68.0° .¹

a) Write a differential equation for the body's temperature after t hours have passed.

- b) Find a general solution to your differential equation.
- c) Find a particular solution to your differential equation satisfying the conditions given.

2. Do problem #20 from §11.5.

3. Do problem #22 from §11.5.

¹This problem shamelessly stolen from Hughes-Hallet 1st, p. 511.

1. A detective finds a murder victim at 9am, at which time the body's temperature is measured to be 90.3° . One hour later, the body's temperature is measured to be 89.0° . The temperature in the room has been maintained at a constant 68.0° .¹

a) Write a differential equation for the body's temperature after t hours have passed.

- b) Find a general solution to your differential equation.
- c) Find a particular solution to your differential equation satisfying the conditions given.

2. Do problem #20 from §11.5.

3. Do problem #22 from §11.5.

¹This problem shamelessly stolen from Hughes-Hallet 1st, p. 511.

1. A detective finds a murder victim at 9am, at which time the body's temperature is measured to be 90.3° . One hour later, the body's temperature is measured to be 89.0° . The temperature in the room has been maintained at a constant 68.0° .¹

a) Write a differential equation for the body's temperature after t hours have passed.

- b) Find a general solution to your differential equation.
- c) Find a particular solution to your differential equation satisfying the conditions given.

2. Do problem #20 from §11.5.

3. Do problem #22 from §11.5.

¹This problem shamelessly stolen from Hughes-Hallet 1st, p. 511.

1. A detective finds a murder victim at 9am, at which time the body's temperature is measured to be 90.3° . One hour later, the body's temperature is measured to be 89.0° . The temperature in the room has been maintained at a constant 68.0° .¹

a) Write a differential equation for the body's temperature after t hours have passed.

- b) Find a general solution to your differential equation.
- c) Find a particular solution to your differential equation satisfying the conditions given.

2. Do problem #20 from §11.5.

3. Do problem #22 from §11.5.

¹This problem shamelessly stolen from Hughes-Hallet 1st, p. 511.

1. A detective finds a murder victim at 9am, at which time the body's temperature is measured to be 90.3° . One hour later, the body's temperature is measured to be 89.0° . The temperature in the room has been maintained at a constant 68.0° .¹

a) Write a differential equation for the body's temperature after t hours have passed.

- b) Find a general solution to your differential equation.
- c) Find a particular solution to your differential equation satisfying the conditions given.

2. Do problem #20 from §11.5.

3. Do problem #22 from §11.5.

¹This problem shamelessly stolen from Hughes-Hallet 1st, p. 511.

1. A detective finds a murder victim at 9am, at which time the body's temperature is measured to be 90.3° . One hour later, the body's temperature is measured to be 89.0° . The temperature in the room has been maintained at a constant 68.0° .¹

a) Write a differential equation for the body's temperature after t hours have passed.

- b) Find a general solution to your differential equation.
- c) Find a particular solution to your differential equation satisfying the conditions given.

2. Do problem #20 from §11.5.

3. Do problem #22 from §11.5.

¹This problem shamelessly stolen from Hughes-Hallet 1st, p. 511.

1. A detective finds a murder victim at 9am, at which time the body's temperature is measured to be 90.3° . One hour later, the body's temperature is measured to be 89.0° . The temperature in the room has been maintained at a constant 68.0° .¹

a) Write a differential equation for the body's temperature after t hours have passed.

- b) Find a general solution to your differential equation.
- c) Find a particular solution to your differential equation satisfying the conditions given.

2. Do problem #20 from §11.5.

3. Do problem #22 from §11.5.

¹This problem shamelessly stolen from Hughes-Hallet 1st, p. 511.

1. A detective finds a murder victim at 9am, at which time the body's temperature is measured to be 90.3° . One hour later, the body's temperature is measured to be 89.0° . The temperature in the room has been maintained at a constant 68.0° .¹

a) Write a differential equation for the body's temperature after t hours have passed.

- b) Find a general solution to your differential equation.
- c) Find a particular solution to your differential equation satisfying the conditions given.

2. Do problem #20 from §11.5.

3. Do problem #22 from §11.5.

¹This problem shamelessly stolen from Hughes-Hallet 1st, p. 511.

1. A detective finds a murder victim at 9am, at which time the body's temperature is measured to be 90.3° . One hour later, the body's temperature is measured to be 89.0° . The temperature in the room has been maintained at a constant 68.0° .¹

a) Write a differential equation for the body's temperature after t hours have passed.

- b) Find a general solution to your differential equation.
- c) Find a particular solution to your differential equation satisfying the conditions given.

2. Do problem #20 from §11.5.

3. Do problem #22 from §11.5.

¹This problem shamelessly stolen from Hughes-Hallet 1st, p. 511.