(Easier) Practice Quiz 8 Calc 3 11/12/2004

1. Compute $\int_{C}\left\langle x^{2}+y^{2},-x y^{2}\right\rangle \cdot d \vec{r}$ for C the positively oriented rectangle having vertices $(0,0)(1$, $0),(1,5)$, and $(0,5)$.

By Greene's Theorem the integral is equal to $\int_{0}^{1} \int_{0}^{5}\left(-y^{2}-2 y\right) d y d x=-\frac{200}{3}$.

(Harder) Practice Quiz 8 Calc 3 11/12/2004

1. Compute $\int_{C} \vec{F} \cdot d \vec{r}$ for the vector field $\vec{F}(x, y)=\left\langle-x^{2} y, x y^{2}\right\rangle$ where C is the boundary of the region in the first quadrant between a circle of radius 1 and a circle of radius 2 .

By Greene's Theorem (and recognizing that polar coordinates are much more natural for this region)
the integral is equal to $\iint_{D}\left(y^{2}+x^{2}\right) d A=\int_{0}^{\pi / 2} \int_{1}^{2} r^{2} \cdot r d r d \theta=\frac{15 \pi}{8}$.

