Instructor: Jonathan White
E-Mail: JWhite@Coe.Edu
Web Page: http://www.coe.edu/~jwhite/
Office: Hickok 206A
Office Hours: MTWF 3:00-3:50pm and by appointment
Office Phone: 399-8280
Home Phone: $\quad 841-5111$ (between 7 am and 10pm)
Text: \quad Calculus, Single and Multivariable, $3^{\text {rd }}$ Edition, Hughes-Hallett et al.
Problem Sets Assorted Problem Sets will be given throughout the term to supplement class work.
\& Quizzes: Many of these will benefit from the use of the software package Maple, which is available on the computers in the labs throughout campus. Quizzes will also be given frequently. Combined these will be worth 200 points ($2 / 7$ of the final grade).

Exams: There will be three in-class exams administered during class time. The dates of these are indicated in the schedule on the back side of this sheet. These exams will be worth 100 points ($1 / 7$ of the final grade) each.

The final exam will be held during finals week at the date and time indicated on the back side of this sheet. The final will be worth 200 points ($2 / 7$ of the final grade).

Grading: Grading will approximately follow a $90 \% \mathrm{~A}, 80 \% \mathrm{~B}, 70 \% \mathrm{C}, 60 \% \mathrm{D}$ scale.
Makeups: \quad Makeups for exams will generally be allowed only under extenuating circumstances, with documentation and advance notice when humanly possible. Late problem sets and quizzes will generally not be accepted, and if accepted due to extenuating circumstances will generally be subject to a penalty of 20% of the possible points for each day past due.

Calculus 3 is the culmination of the calculus sequence, and this presents challenges in at least three respects. First, ability to visualize and use spatial intuition is taken to a new level. Second, computations are in some cases correspondingly bigger and longer. Third, abstract theoretical considerations become a more central element, sometimes overshadowing mere computations as the most important material.

In response to all three of these considerations the judicious use of technology can be a valuable aid. Sophisticated calculators such as the TI-89 and computer software packages such as Maple, when used properly, can lead to easier and deeper understanding of the course material. However the use of this technology itself involves a significant learning experience, and often significant frustrations. We will attempt to use Maple in this course when the benefits are the greatest, and assist you in its use enough to keep the frustrations to a minimum.

If at some point these challenges or frustrations get too bad, I strongly encourage you to see me for extra explanation -- don't wait until you're overwhelmed. I'm here to help.

Tentative Schedule

$\begin{gathered} \text { Monday August } 23^{\text {rd }} \\ \S 12.1 \mathrm{f}: \mathbb{R}^{2} \rightarrow \mathbb{R} \end{gathered}$	Tuesday August $24^{\text {th }}$ Lab: §12.2 \& 12.3 Graphs	Wednesday August $25^{\text {th }}$ $\S 12.4$ Linear Functions	Friday August $27^{\text {th }}$ $\S 12.5 \mathrm{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}$
Monday August 30 ${ }^{\text {th }}$ §13.1 \& § 13.2 Vectors	Tuesday August 31 ${ }^{\text {st }}$ Lab: §12.6 Limits	Wednesday September $1^{\text {st }}$ §13.3 Dot Products	Friday September $3^{\text {rd }}$ §13.4 Cross Products
Monday September $6^{\text {th }}$ No classes - Labor Day	Tuesday September $7^{\text {th }}$ Lab: Slopes	Wednesday September $8^{\text {th }}$ §14.1 \& §14.2 Partial Derivatives	Friday September $10^{\text {th }}$ §14.3 Local Linearity
Monday September $13^{\text {th }}$ \S 14.4 Gradients and f_{u} in \mathbb{R}^{2}	Tuesday September $14^{\text {th }}$ Lab: Gradients	Wednesday September $15^{\text {th }}$ $\S 14.5$ Gradients and f_{u} in \mathbb{R}^{3}	Friday September $17^{\text {th }}$ §14.6 The Chain Rule
Monday September $20^{\text {th }}$ $\S 14.72^{\text {nd }}$-order Partials	Tuesday September $21^{\text {st }}$ Lab: §14.8 Differentiability	Wednesday September $22^{\text {nd }}$ Review	Friday September $24^{\text {th }}$ Exam 1
Monday September $27^{\text {th }}$ §15.1 Local Extrema	Tuesday September $28^{\text {th }}$ Lab: Optimization	Wednesday September $29^{\text {th }}$ §15.2 Optimization	Friday October ${ }^{\text {st }}$ §15.3 Constrained Opt.
Monday October $4^{\text {th }}$ §16.1 Definite Integrals	Tuesday October $5^{\text {th }}$ Lab: Riemann Sums	Wednesday October $6^{\text {th }}$ §16.2 Iterated Integrals	Friday October $8^{\text {th }}$ §16.3 Triple Integrals
Monday October $11^{\text {th }}$ No class - Fall Break	Tuesday October $12^{\text {th }}$ No class - Fall Break	Wednesday October $13^{\text {th }}$ §16.3 Triple Integrals	Friday October $15^{\text {th }}$ App. B: Polar Coordinates
Monday October $18^{\text {th }}$ §16.4 Int. in Polar Coord.	Tuesday October $19^{\text {th }}$ Lab: Integration	Wednesday October $20^{\text {th }}$ §16.5 Int. in Sph. and Cyl.	Friday October $22^{\text {nd }}$ §16.6 Applications to Prob.
Monday October $25^{\text {th }}$ §16.7 Change of Variables	Tuesday October $26^{\text {th }}$ Lab: Monte Carlo Methods	Wednesday October 27 ${ }^{\text {th }}$ Review	Friday October $29^{\text {th }}$ Exam 2
Monday November $1^{\text {st }}$ §17.1\&2 Parametric Curves	Tuesday November $2^{\text {nd }}$ Lab: §17.3 Vector Fields	Wednesday November $3^{\text {rd }}$ §17.4 Flow	Friday November $5^{\text {th }}$ §18.1 Line Integrals
Monday November $8^{\text {th }}$ §18.2 Line Integrals	Tuesday November $9^{\text {th }}$ Lab: §18.3 Path Independence	Wednesday November $10^{\text {th }}$ §18.4 Green's Theorem	Friday November $12^{\text {th }}$ § 17.5 \& §19.1 Flux Integrals
Monday November $15^{\text {th }}$ §19.2 Tidy Flux Integrals	Tuesday November $16^{\text {th }}$ L ab: §20.1 Divergence	Wednesday November $17^{\text {th }}$ §19.3 Less Tidy Flux Integrals	Friday November $19^{\text {th }}$ §20.2 The Div. Theorem
$\begin{gathered} \text { Monday November } 22^{\text {nd }} \\ \S 20.3 \text { Curl } \end{gathered}$	Tuesday November $23^{\text {rd }}$ Lab: Divergence and Curl	Wednesday November $24^{\text {th }}$ No class - Thanksgiving	Friday November $26^{\text {th }}$ No class - Thanksgiving
Monday November $29^{\text {th }}$ §20.4 Stokes' Theorem	Tuesday November $30^{\text {th }}$ Lab: §20.5 The Fun. Theorems	Wednesday December $1^{\text {st }}$ Review	Friday December $3{ }^{\text {rd }}$ Exam 3
Monday December $6^{\text {th }}$ App. C: Complex Numbers	Tuesday December $7^{\text {th }}$ App. C: Complex Numbers	Wednesday December $8^{\text {th }}$ Review	
Tuesday December $14^{\text {th }}-1$ pm - Final Exam			

Any students with disabilities which might affect their performance in this class should contact me as soon as possible to arrange accommodations.

The faculty has adopted a policy on academic integrity. It is your responsibility to understand and follow it.
Diversity, in all its forms, is valuable.

