Problem Set $2 \quad$ Real Analysis $1 \quad$ 9/8/2004

1. No, I don't think it's a very good definition. First of all, notice that it's essentially different from the standard definition: $\mathrm{f}(x)=x$ counts as a bounded function under this proposed definition (since for any a $\in \mathbb{R}, \mathbf{M}=|a|+1$ serves as a bound in this sense). But just because it's different from the normal definition of bounded doesn't make it bad - it might be better, or just different. But what does make it bad is that all functions count as bounded in this sense (since for any $a \in \mathbb{R}, \mathrm{M}=|\mathrm{f}(a)|+1$ serves as a bound in this sense). So if it's a property that every single function has, it might not be a very interesting property.
2.) Use mathematical induction to prove that $n^{2}+n$ is even for all $n \in \mathbb{R}$.
If this problem was stated correctly, then it is FALSE. Counterexample: $(1.45)^{2}+(1.45)=3.5525$, which is not an even number. A number is even if it can be written $k=2 \cdot m$, where $m \in Z$.

$$
\begin{gathered}
3.5525=2(1.77625) \\
1.77625 \notin z
\end{gathered}
$$

I think that this problem should state ".. for all $n \in N$." instead of "for all $n \in \mathbb{R}$." I will now prove it as if it were stated my way. Basis: $n=1: 1^{2}+1=2,2=2 \cdot 1,1 \in Z$
Assume: $n^{2}+n$ is even; so $n^{2}+n=2 \cdot m$ for some $m \in Z$.
Prove: $(n+1)^{2}+(n+1) \stackrel{?}{=} 2 \cdot k$ for some $k \in Z$.

$$
\begin{array}{ll}
n^{2}+2 n+1+n+1 & \stackrel{?}{=} 2 \cdot k \\
n^{2}+n+2 n+2 & \stackrel{y}{=} 2 \cdot k
\end{array}
$$

we know that $n^{2}+n=2 \cdot m$, so we insert that in.

$$
\begin{array}{ll}
2 m+2 n+2 & \stackrel{?}{=} 2 \cdot k \\
2(m+n+1) & \stackrel{?}{=} 2 \cdot k
\end{array}
$$

Where $(m+n+1)=k \in Z$, which makes it even.
By proof of induction I have shown that $n^{2}+n$ is even for all $n \in N$.

Beautiful.
\#3) Prop: $5+8+11+\ldots+(3 n+2)=\frac{1}{2}\left(3 n^{2}+7\right)$ for all $n \in \mathbb{N} \rightarrow \substack{\text { doit } \\ \text { wok } \\ \text { bn }}$

$$
\text { ie. } \quad \sum_{i=1}^{n}(3 i+2)=\frac{1}{2}\left(3 n^{2}+7 n\right)
$$

first: for $n=1: \sum_{i=1}^{1} 3 i+2 \stackrel{?}{=} \frac{1}{2}\left(3(1)^{2}+7(1)\right)$

$$
\begin{gathered}
3(1)+2 \stackrel{?}{=} \frac{1}{2}(3+7) \\
5=5
\end{gathered}
$$

so for $n=1, \sum_{i=1}^{n}(3 i+2)=\frac{1}{2}\left(3 n^{2}+7 n\right)$
second: assume its true for $n=k$,

$$
\text { ie. } \sum_{i=1}^{k}(3 i+2)=\frac{1}{2}\left(3 k^{2}+7 k\right)
$$

is it true for $n=k+1$?

$$
\begin{array}{r}
\sum_{i=1}^{k+1}(3 i+2) \stackrel{?}{=} \frac{1}{2}\left(3(k+1)^{2}+7(k+1)\right) \\
\text { by the } \int \sum_{i=1}^{k}(3 i+2)+(3(k+1)+2) \stackrel{?}{=} \frac{1}{2}\left(3\left(k^{2}+2 k+1\right)+7 k+7\right) \\
\text { asoverion } \frac{1}{2}\left(3 k^{2}+7 k\right)+(3 k+3+2) \stackrel{?}{=} \frac{1}{2}\left(3 k^{2}+6 k+3+7 k+7\right) \\
\text { assumption } \\
\frac{3}{2} k^{2}+\frac{7}{2} k+3 k+5 \stackrel{?}{=} \frac{3}{2} k^{2}+3 k+\frac{3}{2}+\frac{7}{2} k+\frac{7}{2} \\
\frac{3}{2} k^{2}+\frac{13}{2} k+5
\end{array}
$$

so if it's true for $n=k$, it 's true for $n=k+1$
\therefore We have proved by mathematical induction that Nice $\sqrt{0} b$! $\sum_{i=1}^{n} 3 n+2=\frac{1}{2}\left(3 n^{2}+7 n\right)$ for all $n \in \mathbb{N}$.

