
Exam 2        Calc 3        10/28/2005

Each problem is worth 10 points.  For full credit provide complete justification for your answers.

1. Jon plans to do some research about the elk population in the state of Colorado.  He estimates that if
you regard Colorado as a rectangle, with its lower left corner at the origin, lower right corner at the
point (400, 0), upper left corner at the point (0, 300), and upper right corner at the point (400, 300),
then the elk population density as of October 1st, 2005, was roughly given by the function v(x, y) = 6 +
.01x – 0.02y elk per square mile.  Write an iterated integral for the total elk population in Colorado.

2. Set up an iterated integral for the volume of the region beneath the surface z = 9 – x2 – y2 and above
the rectangle in the xy-plane with vertices at the origin, (2,0), (2,1), and (0,1).



3. Set up an iterated integral for the region bounded by the xy-plane, the surface x2 + y2 = 4, and the

surface  in at least two of the following coordinate systems:2 2z x y= +
(a) Rectangular (b) Cylindrical (c) Spherical

4. Suppose that *(x,y) = 3 – 0.2x + 0.5y gives the density in grams
per square cm at a point (x,y) of a strip of pink metal shaped like
the region shown at right.  Set up an integral for the total mass of the
strip.



5. Set up an iterated integral in cylindrical coordinates for the volume of the region bounded by the
hyperboloid of two sheets z2 – x2 – y2 = 1 and the plane z = 2.



6. Compute the Jacobian for the transformation to cylindrical coordinates.



7. Biff is a calculus student at Enormous State University, and he’s having some trouble.  Biff says
“Dude, I’m so totally lost in calculus.  Our T.A. was talking about, like, he did this summer research
project, and they did, like, the amount of ozone over the South Pole, you know, ‘cause there’s a hole
or something.  So he was saying they set up integrals for it and everything, but that’s gotta be messed
up, ‘cause even with these triple integrals it’s still only really good for stuff that’s like rectangles, right? 
And the atmosphere is definitely not a rectangle, even I know that.”

Explain clearly to Biff how spherical coordinates (he saw them in a previous chapter, but doesn’t yet
know what they have to do with integration) could be used in a situation like this.



8. Set up an iterated integral for the volume of the region bounded below by the surface z = x2 and
above by the surface z = a – y2, where a is some positive constant.



9. Find the z coordinate of the center of mass of the tetrahedron formed by the first-octant region below
the surface 2x + 3y + z = 12.



10. The integral  is extremely important in probability and many applications of
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multivariable integration.  It’s also quite troublesome.  Evaluate this integral by converting it to polar
coordinates and working it in that form.

Extra Credit (5 points possible): 



Find the average value of the function  on the interval 0 # x # 1.( )
1

2( ) sin
x

f x t dt= ∫


