Fake Quiz 1 Calc 3 11/29/2005

This is a fake quiz, this is only a fake quiz. In the event of an actual quiz, you'd have been given fair warning. Repeat: This is only a fake quiz.

1. Compute $\int_{c}\left(x^{2}+y^{2}\right) d x-x d y$ along the quarter circle from $(1,0)$ to $(0,1)$.
2. Evaluate $\int_{c}(\sin y \sinh x+\operatorname{sos} y \cosh x) d x+(\cos y \cosh x-\sin y \sinh x) d y$ where C is the line segment from $(1,0)$ to $\left(2, \frac{\mathbf{I}}{\mathbf{2}}\right)$.
3. Evaluate $\iint_{\boldsymbol{S}} \mathbf{F} \cdot \mathbf{n} d \boldsymbol{S}$, where $\mathbf{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=4 \mathrm{xi}-3 \mathrm{yj}+7 \mathrm{zk}$ and S is the surface of the cube bounded by the coordinate planes and the planes $\mathrm{x}=1, \mathrm{y}=1$, and $\mathrm{z}=1$.
4. Evaluate $\iint_{\boldsymbol{S}} \mathbf{P} \cdot \mathbf{n d S}$, where $\mathbf{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{xi}+\mathrm{yj}+2 \mathrm{zk}$ and S is the portion of the cone $\mathrm{z}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}$ between the planes $\mathrm{z}=1$ and $\mathrm{z}=2$, oriented upwards.
5. Evaluate $\int_{c}\left(x^{2}-y\right) d x+x d y$, where C is the circle $\mathrm{x}^{2}+y^{2}=4$ with counterclockwise orientation..
6. Evaluate $\iint_{\boldsymbol{S}}\left\langle x^{3}, x^{2} y, x y\right\rangle \cdot d S$, where S is the surface of the solid bounded by $z=4-x^{2}, y+z=5$, $\mathrm{z}=0$, and $\mathrm{y}=0$.
7. Compute $\int_{\mathbf{C}} \mathbf{P} \cdot d \mathbf{r}$ where $\mathbf{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{yi}+\mathrm{zj}-\mathrm{xk}$ and C is the line segment from $(1,1,1)$ to $(-3,2,0)$.
8. Compute $\int_{d}\left\langle\ln (1+y),-\frac{x y}{1+y}\right) \cdot d \mathbf{r}$ where C is the triangle with vertices $(0,0),(2,0)$, and $(0,4)$.
9. Evaluate $\int_{\{0,1\rangle}^{\{-1\rangle} y \sin x d x-\cos x d y$
10. Compute $\iint_{\boldsymbol{S}} \mathbf{F} \cdot \boldsymbol{n} \boldsymbol{S} \boldsymbol{S}$, where $\mathbf{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=2 \mathrm{yj}+\mathbf{k}$ and S is the portion of the paraboloid $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}$ below the plane $\mathrm{z}=4$ with positive orientation.
