(Easier) Practice Quiz 7 Calc 3 11/15/2005

1. Parametrize and give bounds for the portion of the paraboloid $f(x, y)=9-x^{2}-y^{2}$ which lies above the rectangle in the $x y$-plane with vertices at the origin, $(1,0),(1,2)$, and $(0,2)$.
2. Parametrize and give bounds for the rectangle in the plane $z=0$ with vertices $(0,0,0),(10,0,0)$, $(10,3,0)$, and ($0,3,0$).
3. Paramterize and give bounds for the cylinder centered on the z-axis with radius 5 and between the planes $z=2$ and $z=8$.
4. Let $\mathbf{F}(x, y, z)=\langle 2 x,-z, y\rangle$, and let S be the surface from problem 2 with upward orientation.

Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
(Harder) Practice Quiz 7 Calc 3 11/15/2005

1. Parametrize and give bounds for the portion of the paraboloid $f(y, z)=9-y^{2}-z^{2}$ which lies inside the cylinder $y^{2}+z^{2}=9$.
2. Parametrize and give bounds for the parallelogram with vertices $(0,0,0),(10,0,0),(10,3,0)$, and $(0,3,0)$. [Yeah, it's a duplicate of the Easier problem. I'm lame.]
3. Paramterize and give bounds for the cylinder centered on the x-axis with radius R and between the planes $x=x_{1}$ and $x=x_{2}$. [Notice the change in the problem from the printed version - it makes more sense this way, and this is what I intended in the first place].
4. Let $\mathbf{F}(x, y, z)=\langle 2 x,-z, y\rangle$, and let S be the surface from problem 3 with outward orientation. Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
