REAL ANALYSIS 1 MWF 10:00-10:50AM FALL 2006 STUART 309

Instructor:	Jonathan White
E-Mail:	JWhite@Coe.Edu
Web Page:	http://www.coe.edu/~jwhite/
Office:	Stuart 316
Office Hours:	9:00-9:50 MTWF, and by appointment
Office Phone:	399-8280
Home Phone:	841-5111 (between 7am and 10pm)
Text:	<i>A Friendly Introduction to Analysis, Single and Multivariable</i> , 2 nd Edition, by Witold Kosmala, Prentice-Hall; <i>A Tour of the Calculus</i> , by David Berlinski.
Problem Sets:	Problem Sets will be given throughout the term to supplement class work. Combined these will be worth 200 points (33.3% of the final grade).
Exams:	There will be two exams during the course of the semester, administered during class time. The dates of these are indicated in the schedule on the back side of this sheet. These exams will be worth 100 points (16.7% of the final grade) each.
	The final exam will be given Wednesday, December 11 th , and will be worth 200 points (33.3% of the final grade).
Grading:	Grading will approximately follow a 90% A, 80% B, 70% C, 60% D scale.

"And what are these fluxions? The velocities of evanescent increments. And what are these same evanescent increments? They are neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call them ghosts of departed quantities?"

-Bishop George Berkeley, 1685-1753

Real Analysis is in many ways a dramatically different course than anything which precedes it in the mathematics curriculum. In some regards, students finally get a chance to see the sorts of things that professional mathematicians deal with -- but at the same time, many of these underpinnings are beneath notice once they've been properly laid. The simplest thing that can safely be said is that there are genuinely troubling issues left unaddressed by the undergraduate calculus sequence, and they must be dealt with before moving on.

It is also important to note at this point that the demands on students become qualitatively different in this course than in its prerequisites. Learning strategies which have succeeded in previous classes will not necessarily suffice at this level. If at some point these challenges or frustrations get too bad, I strongly encourage you to see me for extra explanation -- don't wait until you're overwhelmed. I'm here to help.

Tentative Schedule

Monday, August 28 th	Wednesday, August 30 th	Friday, September 1 st	
§1.7 Real Numbers	§1.8 Properties of Real Numbers	§1.9 Review	
Monday, September 4 th	Wednesday, September 6 th	Friday, September 8 th	
No Class – Labor Day	§2.1 Convergence	§2.2 Limit Theorems	
Monday, September 11 th	Wednesday, September 13 th	Friday, September 15 th	
§2.3 Infinite Limits	§2.4 Monotone Sequences	§2.5 Cauchy Sequences	
Monday, September 18 th	Wednesday, September 20 th	Friday, September 22 nd	
§2.5 Cauchy Sequences	§2.6 Subsequences	§2.7 Review	
Monday, September 25 th	Wednesday, September 27 th	Friday, September 29 th	
§3.1 Limit at Infinity	§3.2 Limit at a Real Number	§3.2 Limit at a Real Number	
Monday, October 2 nd	Wednesday, October 4 th	Friday, October 6 th	
§3.3 One-Sided Limits	§3.4 Review	Exam 1	
Monday, October 9 th	Wednesday, October 11 th	Friday, October 13 th	
§4.1 Continuity	§4.2 Discontinuity	§4.3 Properties of Continuous Functions	
Monday, October 16 th	Wednesday, October 18 th	Friday, October 20 th	
No Class – Fall Break	§4.3 Properties of Continuous Functions	§4.4 Uniform Continuity	
Monday, October 23 rd	Wednesday, October 25 th	Friday, October 27 th	
§4.5 Review	§5.1 Derivatives	§5.2 Properties of Differentiable Func.	
Monday, October 30 th	Wednesday, November 1 st	Friday, November 3 rd	
§5.3 Mean Value Theorems	§5.3 Mean Value Theorems	§5.4 Higher Derivatives	
Monday, November 6 th	Wednesday, November 8 th	Friday, November 10 th	
§5.5 L'Hôpital's Rules	§5.6 Review	Exam 2	
Monday, November 13 th	Wednesday, November 15 th	Friday, November 17 th	
§6.1 Riemann Integrals	§6.1 Riemann Integrals	§6.2 Integrable Functions	
Monday, November 20 th	Wednesday, November 22 nd	Friday, November 24 th	
§6.2 Integrable Functions	No Class – Thanksgiving Break	No Class – Thanksgiving Break	
Monday, November 27 th	Wednesday, November 29 th	Friday, December 1 st	
§6.3 Properties of Riemann Integrals	§6.4 Integration and Differentiation	§6.4 Integration and Differentiation	
Monday, December 4 th	Wednesday, December 6 th	Friday, December 8 th	
§6.5 Improper Integrals	§6.7 Review	Dedekind Cuts	
Final Exam – 8am Wednesday 12/13			

Any students with disabilities which might affect their performance in this class should contact me as soon as possible to arrange accommodations.

The faculty has adopted a policy on academic integrity. It is your responsibility to understand and follow it.

Diversity, in all its forms, is valuable.