The Geometric Series Test: If a series is of the form
$$\sum_{n=0}^{\infty} a \cdot r^n$$
, then the series converges $\left(\text{to } \frac{a}{1-r} \right)$ if and only if $|r| < 1$

The Integral Test: Suppose f(x) is a continuous, positive, decreasing function on $[c, \infty)$ for some $c \ge 0$, with $a_n = f(n)$ for all n,

- If $\int_{a}^{\infty} f(x) dx$ converges, then $\sum a_n$ converges also.
- If $\int_{c}^{\infty} f(x) dx$ diverges, then $\sum a_n$ diverges also.

The Comparison Test: If Σa_n and Σb_n are both series with their terms all positive, and

- $a_n \leq b_n$ with Σb_n convergent, then Σa_n converges also.
- $a_n \ge b_n$ with Σb_n divergent, then Σa_n diverges also.

The Limit Comparison Test: If Σa_n and Σb_n are both series with their terms all positive, and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L$$

for some finite, positive number L, then either both series converge or both series diverge.

The Ratio Test: If Σa_n is a series for which

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = L$$

then

- if L < 1 then the series converges absolutely.
- if L > 1 (or if the limit diverges to $+\infty$) then the series diverges.

The Alternating Series Test: If Σa_n is a series for which

- the signs alternate, i.e. a_n and a_{n+1} have opposite signs for all n
- the sequence involved tends to zero, i.e. $\lim_{n \to \infty} a_n = 0$
- the sequence involved is decreasing, i.e. $|a_{n+1}| \le |a_n|$ for all n

then the series converges.