Exam 1 Calc 2 9/15/2006

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Evaluate $\int\left(\sin x-x^{3}+x^{-1}+e^{x}\right) d x$.
2. Set up an integral for the average value of the function $\mathrm{g}(t)=x^{2}$ on the interval [0,2].
3. Find the area of the region between $y=6-x^{2}$ and the x-axis.
4. Evaluate $\int \frac{1}{x(\ln x)^{3}} d x$.
5. A spring has a natural length of 16 inches, and 60 pounds hold it stretched to a length of 20 inches. How much work is done in stretching the spring from a length of 20 inches to a length of 22 inches?
6. Suppose that the region bounded by $y=\sin x$ and the x-axis between $x=0$ and $x=\pi$ is rotated around the y-axis. Set up an integral for the volume of the resulting solid.
7. Suppose that the region bounded between $y=x^{2}$ and $y=x+2$ is rotated around the x-axis. Set up an integral for the volume of the resulting solid.
8. Bunny is a calculus student at Enormous State University, and she's having some trouble. Bunny says "Ohmygod, this is the most totally confusing experience in my life. I studied the examples in the book a really long time and figured out how to do the shells thing and the washer thing, so I thought I was pretty good. But then our professor said something about problems where only one of them works, and I have no idea how you tell that, and we're not allowed to ask questions in lecture because there's like a thousand people. The only way I know how to tell which to use is by which section the homework problem is from!"

Explain clearly to Bunny how you can tell when a problem needs to by done by shells rather than washers or discs.
9. Set up and evaluate an integral to show that the area of a trapezoid with height h and parallel sides with lengths b_{1} and b_{2} has area $\frac{h\left(b_{1}+b_{2}\right)}{2}$.
10. Suppose that a ditch shaped like a triangular prism (shown below) needs to be drained in order to free a baby giraffe whose leg is stuck in a culvert at one end of the ditch. The ditch is 40 feet long, 6 feet wide, and 6 feet deep, full of water weighing 62.5 pounds per ft^{3}. How much work is required to pump all the water up to the level of the top of the ditch?

Extra Credit (5 points possible):
A torus (the fancy name for the shape of a donut) is formed by revolving the region inside the circle x^{2} $+y^{2}=1$ around the axis $x=2$. What is the volume of this torus?

