Fake Quiz 1 Calc 3 11/28/2006

This is a fake quiz, this is *only* a fake quiz. In the event of an actual quiz, you'd have been given fair warning. Repeat: This is *only* a fake quiz.

1. Compute $\int_{\mathcal{C}} (x^2 + y^2) dx - x dy$ along the quarter circle from (1,0) to (0,1).

Integrate the long way to get $-1 - \pi/4$.

2. Evaluate $\int_{\mathcal{C}} (\sin y \sinh x + \cos y \cosh x) dx + (\cos y \cosh x - \sin y \sinh x) dy$ where C is the line segment from (1,0) to $(2, \frac{\pi}{2})$.

Integrate using the Fundamental Theorem for Line Integrals (the potential function is $f = \sin y \cosh x + \cos y \sinh x$) to get $\cosh 2 - \sinh 1$.

3. Evaluate $\iint_{\mathbf{g}} \mathbf{F} \cdot \mathbf{n} d\mathbf{S}$, where $\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = 4\mathbf{x}\mathbf{i} - 3\mathbf{y}\mathbf{j} + 7\mathbf{z}\mathbf{k}$ and S is the surface of the cube bounded by the coordinate planes and the planes $\mathbf{x}=1$, $\mathbf{y}=1$, and $\mathbf{z}=1$.

Integrate using the Divergence Theorem to get 8.

4. Evaluate $\iint_{\mathbf{g}} \mathbf{F} \cdot \mathbf{n} d\mathbf{S}$, where $\mathbf{F}(x,y,z) = x\mathbf{i} + y\mathbf{j} + 2z\mathbf{k}$ and S is the portion of the cone $z^2 = x^2 + y^2$ between the planes z = 1 and z = 2, oriented upwards.

Integrate the long way to get $14\pi/3$.

5. Evaluate $\int_{C} (x^2 - y) dx + x dy$, where C is the circle $x^2 + y^2 = 4$ with counterclockwise orientation.

Use Green's Theorem to get 8π .

6. Evaluate $\iint_{\mathbf{g}} \langle \mathbf{x}^3, \mathbf{x}^2 \mathbf{y}, \mathbf{x} \mathbf{y} \rangle \cdot d\mathbf{S}$, where S is the surface of the solid bounded by z=4-x², y+z=5, z=0, and y=0.

Use the Divergence Theorem to get 4608/35.

7. Compute $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x,y,z) = y\mathbf{i} + z\mathbf{j} - x\mathbf{k}$ and C is the line segment from (1,1,1) to

(-3,2,0).

Integrate the long way to get -13/2.

8. Compute $\int_{C} \left\langle \ln(1+y), -\frac{xy}{1+y} \right\rangle d\mathbf{r}$ where C is the triangle with vertices (0,0), (2,0), and (0,4).

Use Green's Theorem to get –4.

9. Evaluate
$$\int_{(0,1)}^{(x,-1)} y \sin x \, dx - \cos x \, dy$$

Use the Fundamental Theorem for Line Integrals (the potential function is $f = -y \cos x$ to get 0.

10. Compute $\iint_{\mathbf{g}} \mathbf{F} \mathbf{n} d\mathbf{S}$, where $\mathbf{F}(x,y,z) = 2y\mathbf{j} + \mathbf{k}$ and S is the portion of the paraboloid $z = x^2 + y^2$ below the plane z = 4 with positive orientation.

Use the long way to get -12π .