Let $a$ and $c$ be constants. Then
Constant Rule for Limits: $\quad \lim _{x \rightarrow a} c=c$

Rule X for Limits:

$$
\lim _{x \rightarrow a} x=a
$$

And as long as $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist,

Sum Rule for Limits:

$$
\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)
$$

Difference Rule for Limits:

$$
\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)
$$

Constant Multiple Rule for Limits:

$$
\lim _{x \rightarrow a}[c \cdot f(x)]=c \cdot \lim _{x \rightarrow a} f(x)
$$

Product Rule for Limits:

Quotient Rule for Limits:
$\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ as long as $\lim _{x \rightarrow a} g(x) \neq 0$.

Power Rule for Limits:

$$
\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}
$$

