v=rsint Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Which of the following is (or are) a solution to the differential equation
$$\frac{dy}{dx} = 0.3y$$
?

a) $y = 3e^{0.3t}$ $y'' = 9e^{0.3t}$

b)
$$y = 5e^{0.3i}$$
 $y = 1.5e^{.3t}$

.9 e.3+ = .9 e.3+

b)
$$y = 5e^{0.3t}$$
 y $1 = 1.5e^{.3t}$

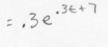
b)
$$y = 5e^{0.3t}$$
 $y = 1.5e^{0.3t}$

b)
$$y = 5e^{0.3i}$$
 $y = 1.5e^{0.3i}$
c) $y = e^{0.3i+7}$ $y = .3e^{0.3i+7}$

c)
$$y = e^{0.3i+7}$$
 $y' = .3e^{.3+7}$

c)
$$y = e^{0.3t+7} \ y' = .3e^{.3t+7}$$

a) $.9e^{.3t} \stackrel{?}{=} .3(3e^{.3t})$ b) $1.5e^{.3t} \stackrel{?}{=} .3(5e^{.3t})$ c) $.3e^{.3t+7} \stackrel{?}{=} .3(e^{.3t+7})$
 $.9e^{.3t} = .9e^{.3t}$ $1.5e^{.3t} = 1.5e^{.3t}$



Exam 3

X=VCOSO

2. Set up an integral for the length of the cardioid with polar equation $r = 2 + \sin \theta$. $\frac{dr}{d\theta} = \cos\theta$

Arclength =
$$\int \sqrt{r^2 + [r'(\theta)]^2} d\theta$$
 $\frac{dr}{d\theta}$

$$= \int \sqrt{2\pi} \sqrt{(2+\sin\theta)^2 + [\cos\theta]^2} d\theta$$
Givent

a) Convert the rectangular coordinates
$$(-3, 3)$$
 to polar coordinates.

$$X = r \cos \theta \qquad \forall = r \sin \theta$$

$$(3\sqrt{2}, 3\sqrt{4})$$

$$3^{2} + 3^{2} = r^{2} \qquad (=3\sqrt{2})$$

$$4 + 9 = r^{2} \qquad 4$$

$$18 = r^{2} \Rightarrow (=\sqrt{18})$$

) b) Convert the polar coordinates $(6, \pi/3)$ to rectangular coordinates.

$$X = 6\cos(T/3)$$
 $= 4 = 6\sin(T/3)$
 $X = 6 \cdot \frac{1}{2} = 3$ $= 4 \cdot \frac{1}{2} = 3\sqrt{3}$

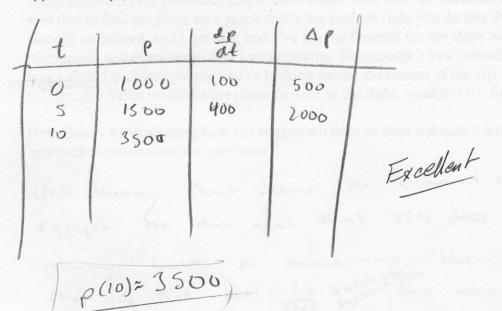
6

4. Identify the conic section $4y^2 - 9x^2 = 36$ as an ellipse, hyperbola, or parabola, and sketch a rough graph.

$$4y^{2}-9x^{2}=36$$
 $\frac{36}{4}=1$
hyperbola

 $\frac{x^{2}}{9}-\frac{x^{2}}{2}=1$

5. Let $\frac{dp}{dt} = 0.6p - 500$, and let p(0) = 1000. Use Euler's method with $\Delta t = 5$ to approximate p(10) to the nearest hundred.



Center (-3, 1)
$$\frac{(x+3)^2}{4^2} + \frac{(y-1)^2}{3^2} = 1$$

$$\frac{(x+3)^2}{(x+3)^2} \cdot (y-1)^2 = 1$$

9. The differential equation $\frac{dp}{dt} = kp - h$ can be used to model populations subject to steady

harvesting, as for example with Iowa's deer population, where k and h are constants representing the relative rate at which a population is reproducing and the rate at which that population is being harvested. Find a general solution to this differential equation.

KINIUI