Exam 4 Calc 2 12/5/2007

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Find the sum of the series $\frac{3}{4}-\frac{3}{10}+\frac{3}{25}-\frac{6}{125}+\frac{12}{625}-\ldots$.
2. Give a power series for $f(x)=\frac{\sin x}{x}$ of at least $4^{\text {th }}$ degree.
3. Find a Taylor polynomial of degree at least 4 for $f(x)=\cos x$ centered at $x=\pi / 2$.
4. Determine whether $\sum_{n=1}^{\infty} \frac{3 n}{n^{3}+1}$ converges or diverges.
5. Determine whether $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$ converges or diverges.
6. Find the radius of convergence of the Maclaurin series for $f(x)=e^{x}$.
7. Biff is a calculus student at Enormous State University, and he's having some trouble. Biff says "Dude, this sucks. I can do every single homework problem from those sections about comparison tests and integral tests and everything, so I figured I was totally good. But then our review sheet had this really weird question about, like, if this one series a_{n} converges and this other series is, like, $b_{n}=a_{n}+3$, then can that b_{n} series converge. I got nothin', 'cause it's the wrong way for the comparison stuff. So I guess doin' homework just isn't worth it, so I'm gonna go play some more World of Warcraft. "

Help Biff by explaining what he might be able to do in an instance like this.
8. Use a Maclaurin polynomial of at least $7^{\text {th }}$ degree to approximate $\int_{0}^{0.1} \frac{1}{1+x^{3}} d x$ to 4 decimal places.
9. a) Determine whether $\sum_{n=1}^{\infty} \frac{n^{n}}{(2 n)!}$ converges or diverges.
b) What is $\lim _{n \rightarrow \infty} \frac{n^{n}}{(2 n)!}$?
10. The radius of convergence of the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{3^{n}(x-4)^{n}}{n^{2}}$ is $1 / 3$. Are the endpoints included?

Extra Credit (5 points possible): Prove that if the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, then the series $\sum_{n=1}^{\infty}\left(\frac{n+1}{n}\right) a_{n}$ is also absolutely convergent. [Stewart $5^{\text {th }}$ p. 787]

