Exam 2 Calc 3 10/26/2007

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Set up limits of integration in polar coordinates for the integral of a function g on the region R shown below:

2. Set up limits of integration for a double integral to compute $\iint_{R} f(x, y) d A$, where R is the triangle with vertices $(0,0),(3,0)$, and $(3,3)$.
3. Find the Jacobian for the transformation $x=u^{2}+v^{2}, y=u-v$.
4. Set up an iterated integral for the volume of a sphere (centered at the origin) of radius 3 with a cylinder of radius 2 (centered along the z - axis) removed.
5. Set up an iterated integral for the surface area of the part of the plane $3 x+2 y+z=6$ that lies in the first octant.
6. Evaluate $\int_{0}^{3} \int_{y^{2}}^{9} y \cos \left(x^{2}\right) d x d y$.
7. Bunny is a calculus student from Enormous State University, and she has a question. Bunny says "So, I really studied hard this chapter, and it's amazing how much more interesting math is when you actually understand it! But there's one thing I was wondering about with, like, changing to polar and stuff. I know there are times when it's lots easier to set something up in x and y, right, and times when it's lots easier in polar. But are there times when you'd really have to use x and y, like where polar wouldn't work no matter what, or is it just about what's easier?"

Answer Bunny's question.
8. Set up integrals for the z coordinate of the center of mass of the portion above the $x y$-plane of the region between a sphere with radius 1 and a sphere with radius 3 (both centered at the origin).
9. Evaluate $\iiint_{E} 2 d V$, where E is the region bounded between $y=x^{2}+z^{2}$ and $y=4$.
10. Let a be some constant. What can you say about the volume of the region in the first octant above $z=a$ but below $z=\frac{1}{\sqrt[3]{x y}}$?

Extra Credit [up to 5 points possible]: Find the volume of the region bounded between $z=x^{2}+y^{2}$ and $y=x^{2}+z^{2}$.

