Fake Quiz 4 Calc 3 11/16/2007

This is a fake quiz, this is *only* a fake quiz. In the event of an actual quiz, you'd have been given fair warning. Repeat: This is *only* a fake quiz.

1. Compute
$$\int_{\mathcal{C}} (x^2 + y^2) dx - x dy$$
 along the quarter circle from (1,0) to (0,1)

Integrate the long way to get $-1 - \pi/4$.

2. Evaluate
$$\int_{C} (\sin y \sinh x + \cos y \cosh x) dx + (\cos y \cosh x - \sin y \sinh x) dy$$
 where C is the line segment from (1,0) to $(2, \frac{\pi}{2})$.

Integrate using the Fundamental Theorem for Line Integrals (the potential function is $f = \sin y \cosh x + \cos y \sinh x$) to get $\cosh 2 - \sinh 1$.

3. Evaluate \iint_{S} FindS, where $\mathbf{F}(x,y,z) = 4x\mathbf{i} - 3y\mathbf{j} + 7z\mathbf{k}$ and S is the surface of the cube bounded by the coordinate planes and the planes x=1, y=1, and z=1.

Integrate using the Divergence Theorem to get 8.

4. Evaluate $\iint_{\mathbf{S}} \mathbf{F} \cdot \mathbf{ndS}$, where $\mathbf{F}(x,y,z) = x\mathbf{i} + y\mathbf{j} + 2z\mathbf{k}$ and S is the portion of the cone $z^2 = x^2 + y^2$ between the planes z = 1 and z = 2, oriented upwards.

Integrate the long way to get $14\pi/3$.

5. Evaluate
$$\int (x^2 - y) dx + x dy$$
, where C is the circle $x^2 + y^2 = 4$ with counterclockwise orientation.

Use Green's Theorem to get 8π .

6. Evaluate $\iint \{x^3, x^2y, xy\}$ dS, where S is the surface of the solid bounded by z=4-x², y+z=5, z=0, and y=0.

Use the Divergence Theorem to get 4608/35.

7. Compute
$$\int \mathbf{F} d\mathbf{r}$$
 where $\mathbf{F}(x,y,z) = y\mathbf{i} + z\mathbf{j} - x\mathbf{k}$ and C is the line segment from (1,1,1) to

(-3,2,0).

Integrate the long way to get -13/2.

8. Compute
$$\int_{\mathcal{C}} \langle \ln(1+y), -\frac{xy}{1+y} \rangle d\mathbf{r}$$
 where C is the triangle with vertices (0,0), (2,0), and (0,4).

Use Green's Theorem to get -4.

9. Evaluate
$$\int_{(0,1)}^{(x,-1)} y \sin x \, dx - \cos x \, dy$$

Use the Fundamental Theorem for Line Integrals (the potential function is $f = -y \cos x$ to get 0.

10. Compute $\iint_{\mathbf{x}} \mathbf{F} \cdot \mathbf{n} d\mathbf{S}$, where $\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = 2\mathbf{y}\mathbf{j} + \mathbf{k}$ and S is the portion of the paraboloid $\mathbf{z} = \mathbf{x}^2 + \mathbf{y}^2$ below the plane $\mathbf{z} = 4$ with positive orientation.

Use the long way to get -12π .