Calculus 3 MTWF 1:00-1:50pm Fall 2007 Stuart 308

Instructor: Jonathan White
E-Mail: JWhite@Coe.Edu
Web Page: public.coe.edu/~jwhite
Office: Stuart 316
Office Hours: MTWF 9:00-9:50am and by appointment
Office 399-8280
Phone:
Home Phone: 841-5111 (between 7am and 10pm)
Text: Calculus, Early Transcendentals, $5^{\text {th }}$ Edition, James Stewart
Problem Sets There will be several problem sets and quizzes during the semester, as well as online \& Quizzes: WeBWorK assignments. Together these will be worth 200 points ($2 / 7$ of the final grade)

Exams: There will be three in-class exams administered during class time. The dates of these are indicated in the schedule on the back side of this sheet. These exams will be worth 100 points (1/7 of the final grade) each.

The final exam will be held during finals week at the date and time indicated on the back side of this sheet. The final will be worth 200 points ($2 / 7$ of the final grade).

Grading: Grading will approximately follow a $90 \% \mathrm{~A}, 80 \% \mathrm{~B}, 70 \% \mathrm{C}, 60 \% \mathrm{D}$ scale. Current grade information will be available online through Moodle at all times.

Makeups: For the sake of fairness to those who follow the schedule, makeups for exams will be allowed only under extenuating circumstances, with documentation and advance notice when humanly possible. Late problem sets and quizzes will generally not be accepted, and if accepted will generally be subject to a penalty of 20% of the possible points for each day past due.

Any student entering this class should already be aware that calculus is the mathematics of changing quantities. The major development in Calculus 3 is that we widen our scope to functions of more than one variable. This simultaneously adds tremendously to the breadth of phenomena that can be addressed, and also introduces complications that have no analog in the essentially two-dimensional world of Calculus 1 and 2.

Calculus 3 is the culmination of the calculus sequence, and this presents challenges in at least three respects. First, ability to visualize and use spatial intuition is taken to a new level. Second, computations are in some cases correspondingly bigger and longer. Third, abstract theoretical considerations become a more central element, sometimes overshadowing mere computations as the most important material.

In response to all three of these considerations the judicious use of technology can be a valuable aid. Sophisticated calculators such as the TI-89 and computer software packages such as Mathematica, when used properly, can lead to easier and deeper understanding of the course material. However the use of this technology itself involves a significant learning experience, and often significant frustrations. We will attempt to use Mathematica in this course when the benefits are the greatest, and assist you in its use enough to keep the frustrations to a minimum.

If at some point these challenges or frustrations get too bad, I strongly encourage you to see me for extra explanation -- don't wait until you're overwhelmed. I'm here to help.

Tentative Schedule

Monday, August $27^{\text {th }}$ §12.1-2 \mathbb{R}^{3} and Vectors	Tuesday, August $28^{\text {th }}$ §12.3 Dot Products	Wednesday, August $29^{\text {th }}$ §12.4 Cross Products	Friday, August $31^{\text {st }}$ §12.5 Lines \& Planes
Monday, September $3{ }^{\text {rd }}$ No Class - Labor Day	Tuesday, September $4^{\text {th }}$ § 12.6 Quadric Surfaces	Wednesday, September $5^{\text {th }}$ §12.7 Cyl. \& Sph. Coordinates	Friday, September $7^{\text {th }}$ §13.1 Vector Functions
$\begin{gathered} \text { Monday, September } 10^{\text {th }} \\ \S 13.2 \& \S 13.4 \mathbf{r}^{\prime}(\mathrm{t}) \end{gathered}$	$\begin{gathered} \text { Tuesday, September } 11^{\text {th }} \\ \S 14.1 \mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R} \end{gathered}$	Wednesday, September $12^{\text {th }}$ §14.2 Limits \& Continuity	Friday, September $14^{\text {th }}$ §14.3 Partial Derivatives
Monday, September $17^{\text {th }}$ §14.4 Tangent Planes	Tuesday, September $18^{\text {th }}$ §14.5 Chain Rule	Wednesday, September $19^{\text {th }}$ §14.6 Directional Derivatives	Friday, September $21^{\text {st }}$ §14.7 Optimization
Monday, September $24^{\text {th }}$ §14.7 Optimization	Tuesday, September $25^{\text {th }}$ §14.8 Constrained Optimization	Wednesday, September $26^{\text {th }}$ Review for Exam	Friday, September $28^{\text {th }}$ Exam 1
Monday, October $1^{\text {st }}$ §15.1 Double Integrals	Tuesday, October $2^{\text {nd }}$ §15.1 Double Integrals	Wednesday, October $3^{\text {rd }}$ §15.2 More Double Integrals	Friday, October $5^{\text {th }}$ §15.3 General Double Int.
Monday, October $8^{\text {th }}$ §15.4 Double Int. in Polar	Tuesday, October $9^{\text {th }}$ §15.5 Applications	Wednesday, October $10^{\text {th }}$ §15.5 Applications	Friday, October $12^{\text {th }}$ §15.6 Surface Area
Monday, October $15^{\text {th }}$ No Class - Fall Break	Tuesday, October $16^{\text {th }}$ No Class - Fall Break	Wednesday, October $17^{\text {th }}$ §15.7 Triple Integrals	Friday, October $19^{\text {th }}$ §15.8 Int. in Cyl. \& Sph.
Monday, October $22^{\text {nd }}$ §15.8 Int. in Cyl. \& Sph.	Tuesday, October $23^{\text {rd }}$ §15.9 The Jacobian	Wednesday, October $24^{\text {th }}$ Review for Exam	Friday, October $26^{\text {th }}$ Exam 2
Monday, October $29^{\text {th }}$ §16.1 Vector Fields	Tuesday, October $30^{\text {th }}$ §16.2 Line Integrals	Wednesday, November $31^{\text {st }}$ §16.2 Line Integrals	Friday, November $2^{\text {nd }}$ §16.3 Fund. Thm. of Line Int.
Monday, November $5^{\text {th }}$ §16.4 Green's Theorem	Tuesday, November $6^{\text {th }}$ §16.5 Curl \& Divergence	Wednesday, November $7^{\text {th }}$ §16.6 Parametric Surfaces	Friday, November $9^{\text {th }}$ §16.7 Surface Integrals
Monday, November $12^{\text {th }}$ §16.7 Surface Integrals	Tuesday, November $13^{\text {th }}$ §16.8 Stokes' Theorem	Wednesday, November $14^{\text {th }}$ §16.9 Divergence Theorem	Friday, November $15^{\text {th }}$ §16.10 Summary
Monday, November 19 ${ }^{\text {th }}$ Review for Exam	Tuesday, November $20^{\text {th }}$ Exam 3	Wednesday, November $21^{\text {st }}$ No Class - Thanksgiving Break	Friday, November $22^{\text {nd }}$ No Class - Thanksgiving Break
Monday, November $26^{\text {th }}$ Power Series	Tuesday, November $27^{\text {th }}$ Power Series	Wednesday, November $28^{\text {th }}$ Power Series	Friday, November $30^{\text {th }}$ Power Series
Monday, December $3{ }^{\text {rd }}$ Euler's Formula	Tuesday, December $4^{\text {th }}$ Complex Arithmetic	Wednesday, December $5^{\text {th }}$ Complex Arithmetic	Friday, December $7^{\text {th }}$ Review
Final Exam - 11am on Wednesday, December 12 ${ }^{\text {th }}$			

Any students with disabilities which might affect their performance in this class should contact me as soon as possible to arrange accommodations.

The faculty has adopted a policy on academic integrity. It is your responsibility to understand and follow it.

Diversity, in all its forms, is valuable.

