Exam 1 Real Analysis 1 10/3/2008

Each problem is worth 10 points. Show adequate justification for full credit. Don't panic.

1. State the definition of the limit of a function f(x) as x approaches $+\infty$.

2. a) State the definition of an oscillatory sequence.

b) Give an example of an oscillatory sequence.

3. a) Give an example of a function that converges to 5 as *x* approaches $+\infty$.

b) Give an example of a set with exactly two accumulation points.

4. State the Bolzano-Weierstrass Theorem for Sets.

5. Prove directly from the definition that $\lim_{x \to a} c \cdot x = c \cdot a$, where *c* is a real constant.

6. Suppose that f and g are functions with both having domain $D \subseteq \mathbb{R}$. Prove that if $\lim_{x \to a} f(x) = A$ and $\lim_{x \to a} g(x) = B$ then $\lim_{x \to a} (f \cdot g)(x) = A \cdot B$. 7. State and prove the Monotone Convergence Theorem (proof of *either* case is acceptable).

- 8. Using some or all of the axioms:
- (A1) (*Closure*) a + b, $a \cdot b \in \mathbb{R}$ for any $a, b \in \mathbb{R}$. Also, if $a, b, c, d \in \mathbb{R}$ with a = b and c = d, then a + c = b + d and $a \cdot c = b \cdot d$.
- (A2) (*Commutative*) a + b = b + a and $a \cdot b = b \cdot a$ for any $a, b \in \mathbb{R}$.
- (A3) (Associative) (a + b) + c = a + (b + c) and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for any $a, b, c, \in \mathbb{R}$.
- (A4) (Additive identity) There exists a zero element in \mathbb{R} , denoted by 0, such that a + 0 = a for any $a \in \mathbb{R}$.
- (A5) (Additive inverse) For each $a \in \mathbb{R}$, there exists an element -a in \mathbb{R} , such that a + (-a) = 0.
- (A6) (*Multiplicative identity*) There exists an element in \mathbb{R} , which we denote by 1, such that $a \cdot 1 = a$ for any $a \in \mathbb{R}$.
- (A7) (*Multiplicative inverse*) For each $a \in \mathbb{R}$ with $a \neq 0$, there exists an element in \mathbb{R} denoted by $\frac{1}{a}$ or a^{-1} , such that $a \cdot a^{-1} = 1$.
- (A8) (*Distributive*) $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ for any $a, b, c \in \mathbb{R}$.
- (A9) (*Trichotomy*) For $a, b \in \mathbb{R}$, exactly one of the following is true: a = b, a < b, or a > b.
- (A10) (*Transitive*) For $a, b \in \mathbb{R}$, if a < b and b < c, then a < c.
- (A11) For $a, b, c \in \mathbb{R}$, if a < b, then a + c < b + c.
- (A12) For $a, b, c \in \mathbb{R}$, if a < b and c > 0, then ac < bc.

Prove that if $a, b \in \mathbb{R}^+$, then a < b if and only if -a > -b. Be explicit about which axioms you use.

9. Show that if a sequence $\{a_n\}$ diverges to $-\infty$ and there exists some n_1 such that for all $n > n_1$ we have $a_n \ge b_n$, then the sequence $\{b_n\}$ must also diverge to $-\infty$.

10. If the sequence $\{a_n\}$ converges to a nonzero constant *A* and $a_n \neq 0$ for any *n*, prove that the sequence $\left\{\frac{1}{a_n}\right\}$ is bounded.