Exam 1 Real Analysis 1 10/3/2008

Each problem is worth 10 points. Show adequate justification for full credit. Don't panic.

1. State the definition of the limit of a function $f(x)$ as x approaches $+\infty$.
2. a) State the definition of an oscillatory sequence.
b) Give an example of an oscillatory sequence.
3. a) Give an example of a function that converges to 5 as x approaches $+\infty$.
b) Give an example of a set with exactly two accumulation points.
4. State the Bolzano-Weierstrass Theorem for Sets.
5. Prove directly from the definition that $\lim c \cdot x=c \cdot a$, where c is a real constant.
6. Suppose that f and g are functions with both having domain $D \subseteq \mathbb{R}$. Prove that if $\lim _{x \rightarrow a} f(x)=A$ and $\lim _{x \rightarrow a} g(x)=B$ then $\lim _{x \rightarrow a}(f \cdot g)(x)=A \cdot B$.
7. State and prove the Monotone Convergence Theorem (proof of either case is acceptable).
8. Using some or all of the axioms:
(A1) (Closure) $a+b, a \cdot b \in \mathbb{R}$ for any $a, b \in \mathbb{R}$. Also, if $a, b, c, d \in \mathbb{R}$ with $a=b$ and $c=d$, then a $+c=b+d$ and $a \cdot c=b \cdot d$.
(A2) (Commutative) $a+b=b+a$ and $a \cdot b=b \cdot a$ for any $a, b \in \mathbb{R}$.
(A3) (Associative) $(a+b)+c=a+(b+c)$ and $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for any $a, b, c, \in \mathbb{R}$.
(A4) (Additive identity) There exists a zero element in \mathbb{R}, denoted by 0 , such that $a+0=a$ for any $a \in \mathbb{R}$.
(A5) (Additive inverse) For each $a \in \mathbb{R}$, there exists an element $-a$ in \mathbb{R}, such that $a+(-a)=0$.
(A6) (Multiplicative identity) There exists an element in \mathbb{R}, which we denote by 1 , such that $a \cdot 1=a$ for any $a \in \mathbb{R}$.
(A7) (Multiplicative inverse) For each $a \in \mathbb{R}$ with $a \neq 0$, there exists an element in \mathbb{R} denoted by $\frac{1}{a}$ or a^{-1}, such that $a \cdot a^{-1}=1$.
(A8) (Distributive) $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$ for any $a, b, c \in \mathbb{R}$.
(A9) (Trichotomy) For $a, b \in \mathbb{R}$, exactly one of the following is true: $a=b, a<b$, or $a>b$.
(A10) (Transitive) For $a, b \in \mathbb{R}$, if $a<b$ and $b<c$, then $a<c$.
(A11) For $a, b, c \in \mathbb{R}$, if $a<b$, then $a+c<b+c$.
(A12) For $a, b, c \in \mathbb{R}$, if $a<b$ and $c>0$, then $a c<b c$.

Prove that if $a, b \in \mathbb{R}^{+}$, then $a<b$ if and only if $-a>-b$. Be explicit about which axioms you use.
9. Show that if a sequence $\left\{a_{n}\right\}$ diverges to $-\infty$ and there exists some n_{1} such that for all $n>n_{1}$ we have $a_{n} \geq b_{n}$, then the sequence $\left\{b_{n}\right\}$ must also diverge to $-\infty$.
10. If the sequence $\left\{a_{n}\right\}$ converges to a nonzero constant A and $a_{n} \neq 0$ for any n, prove that the sequence $\left\{\frac{1}{a_{n}}\right\}$ is bounded.

