The Geometric Series Test: If a series is of the form $\sum_{n=1}^{\infty} a \cdot r^{n-1}$, then the series converges $\left(\right.$ to $\left.\frac{a}{1-r}\right)$ if and only if $|r|<1$

The Integral Test: Suppose $\mathrm{f}(x)$ is a continuous, positive, decreasing function on $[\mathrm{c}, \infty$) for some $c \geq$ 0 , with $a_{n}=\mathrm{f}(n)$ for all n,

- If $\int_{c}^{\infty} \mathrm{f}(x) d x$ converges, then Σa_{n} converges also.
- If $\int_{c}^{\infty} \mathrm{f}(x) d x$ diverges, then Σa_{n} diverges also.

The Comparison Test: If Σa_{n} and Σb_{n} are both series with their terms all positive, and

- $a_{n} \leq b_{n}$ with Σb_{n} convergent, then Σa_{n} converges also.
- $\quad a_{n} \geq b_{n}$ with Σb_{n} divergent, then Σa_{n} diverges also.

The Limit Comparison Test: If Σa_{n} and Σb_{n} are both series with their terms all positive, and

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L
$$

for some finite, positive number L, then either both series converge or both series diverge.

The Alternating Series Test: If Σa_{n} is a series for which

- the signs alternate, i.e. a_{n} and a_{n+1} have opposite signs for all n
- the sequence $\left\{\left|a_{n}\right|\right\}$ tends to zero, i.e. $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$
- the sequence $\left\{\left|a_{n}\right|\right\}$ is decreasing, i.e. $\left|a_{n+1}\right| \leq\left|a_{n}\right|$ for all n
then the series converges.

The Ratio Test: If Σa_{n} is a series for which

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L
$$

then

- if $L<1$ then the series converges absolutely.
- if $L>1$ (or if the limit diverges to $+\infty$) then the series diverges.

