Fake Quiz 4 Calc 3 11/20/2009

This is a fake quiz, this is *only* a fake quiz. In the event of an actual quiz, you'd have been given fair warning. Repeat: This is *only* a fake quiz.

1. Compute
$$\int_{C} (x^2 + y^2) dx - x dy$$
 along the quarter circle from (1,0) to (0,1).

2. Evaluate $\int_{C} (\sin y \sinh x + \cos y \cosh x) dx + (\cos y \cosh x - \sin y \sinh x) dy$ where C is the line segment from (1,0) to $(2, \frac{\pi}{2})$.

3. Evaluate $\iint_{\mathbf{f}} \mathbf{F} \cdot \mathbf{n} d\mathbf{S}$, where $\mathbf{F}(x,y,z) = 4x\mathbf{i} - 3y\mathbf{j} + 7z\mathbf{k}$ and S is the surface of the cube bounded by the coordinate planes and the planes x = 1, y = 1, and z = 1.

4. Evaluate $\iint_{\mathbf{z}} \mathbf{F} \cdot \mathbf{ndS}$, where $\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + 2z \mathbf{k}$ and S is the portion of the cone $z^2 = x^2 + y^2$ between the planes z = 1 and z = 2, oriented upwards.

5. Evaluate
$$\int_{C} (x^2 - y) dx + x dy$$
, where C is the circle $x^2 + y^2 = 4$ with counterclockwise orientation.
6. Evaluate $\iint_{C} (x^3, x^2y, xy) \cdot dS$, where S is the surface of the solid bounded by $z=4 - x^2$, $y + z = 5$, $z = 0$, and $y = 0$.
7. Compute $\int_{C} \mathbf{F} d\mathbf{x}$ where $\mathbf{F}(x, y, z) = y \mathbf{i} + z \mathbf{j} - x \mathbf{k}$ and C is the line segment from (1,1,1) to (-3,2,0).
8. Compute $\int_{C} (\mathbf{n}(1+y), -\frac{xy}{1+y}) \cdot d\mathbf{r}$ where C is the triangle with vertices (0,0), (2,0), and (0,4).
9. Evaluate $\int_{(0,1)}^{(x,-1)} y \sin x dx - \cos x dy$
10. Compute $\iint_{C} \mathbf{F} \mathbf{n} dS$, where $\mathbf{F}(x, y, z) = 2y \mathbf{j} + \mathbf{k}$ and S is the portion of the paraboloid $z = x^2 + y^2$ below the plane $z = 4$ with positive orientation.