(Easier) Practice Quiz 7 Calc 3 11/3/2009

1. Compute $\int_{C}\left(6 x y \vec{i}+3 x^{2} \vec{j}\right) \cdot d \vec{r}$ for a path beginning at $(3,0)$ and ending at $(0,-3)$.
2. Compute $\int_{C}\left\langle y^{2}, x y\right\rangle \cdot d \vec{r}$ for a path C given by $\vec{r}(t)=\langle 2+3 t, 1-5 t\rangle$ for $0 \leq t \leq 1$.

(Harder) Practice Quiz 7 Calc 3 11/3/2009

1. Compute $\int_{C} \vec{F} \cdot d \vec{r}$ for the vector field $\vec{F}(x, y)=\left\langle 2 x y, x^{2}-6 y\right\rangle$ and with C the sinusoidal path beginning at $(3,0)$ and ending at $(-3,0)$ and performing 17 complete oscillations on this interval.
2. Compute $\int_{C} \vec{F} \cdot d \vec{r}$ for the vector field $\vec{F}(x, y)=x^{2} y \vec{i}+y^{3} \vec{j}$ and with C an arc of a circle (centered at the origin) of radius 3 passing counterclockwise through the first and second quadrants.
