L-Tromino Tiling of Mutilated Chessboards

Martin Gardner

Apart from compilations of his Mathematical Games
columns, more than 70 other books Martin Gardner has
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known being The Annotated Alice, a study of Lewis
Carroll's two books about Alice. The Flight of Peter Fromm,
and Visitors from Oz, are novels. Gardner has also edited
several anthologies of popular verse.

Gardner’s lifelong hobby is conjuring, about which he has
written books for the trade. As his good friend Persi
Diaconis has written, “Warning: Martin Gardner has turned
hundreds of mathematicians into magicians and hundreds
of magicians into mathematicians.” ;

Gardner currently lives in Norman, Oklanoma and is as
active writing as ever.

Suppose a standard chessboard is ‘mutilated’ by the removal of two _diagonally oppo-
site corner cells. Can the remaining 62 squares be tiled with 31 dominos? The_answer
is ‘no’ because the removed squares are the same color. Say the co!orl is white. The
remaining 62 squares will have an excess of two black cells. Each d()ml]:lo covers one
black and one white cell. After 30 are placed, two black cells will remain uncovered.
They cannot be adjacent, therefore they can’t be covered by a dor'n@no, This famous
puzzle, solved by a simple parity check, is a simple example of a tiling problem on a
mutilated chess board. . :

Less well known is the following related problem. Assume the chessboard is muti-
Jated by having two cells removed of opposite color from anywhere on the board. Can
the remaining 62 squares always be tiled by dominoes? The answer is yes, and there
is a lovely proof by Ralph Gomory [2].

Figure 1. Gomory’s proof.

Imagine heavy lines drawn on the chessboard as shown in Figure 1. They outline a
closed path along which the squares are like beads of alternating color on a necklace.
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If any two cells of opposite color are taken from the path, it will cut the path into two
open-ended segments, or one segment if the removed cells are adjacent. Each segment
will consist of an even number of cells of alternating colors, therefore it can be tiled
with dominoes. Gomory’s clever proof is easily generalized to all square boards with
an even number of cells.

If, instead of dominos, we tile with L-trominos, also called bent, or V, or right
trominos, then all square boards with a number of cells divisible by 3 can be tiled
except for the 3 x 3 board. We will not be concerned with such ‘whole’ boards, but
only with mutilated boards with a number of cells that is a multiple of 3 after a single
cell has been removed from any spot on the board. We will call such boards deficient.
In other words, a board of side  is deficient if n* — 1 is a multiple of 3, i.e., n is not a
multiple of 3. The sides of such boards form the sequence

2,45 708100003504 (*)

We will call these numbers the orders of a board and, from now on, the word fromino
will mean an L-tromino exclusively.

Our basic question is this: What deficient boards with sides in the sequence ()
can be tiled without gaps or overlaps with L-trominos after a cell has been taken from
anywhere on the board? We will take up these boards roughly in numerical order,
culminating with a statement of the complete solution.

Powers of 2

Consider the order-2 board first. It obviously is tilable with any cell missing (see Figure
2, left). Figure 2, right, shows how the order-4 can be tiled. The 2 x 2 square takes
care of a missing cell in each of its four corners. The rest of the board is tiled by
taking advantage of what Solomon Golomb named a rep-tile—a tile that can form an
enlarged replica of itself. The top left 2 x 2 square rotates to put its missing cell in
four places, and the entire order-4 square rotates to carry the missing cell to any of its

sixteen places.

Figure 2. Orders 2 and 4.

In 1953 Golomb, the “father” of polyominoes (he named them and was the first to
study them in depth) discovered a beautiful proof by induction that all boards with
sides in the doubling sequence 2, 4, 8, 16, ... could be tiled with trominoes when any
cell is missing. The proof was first published in [3]. It is repeated on pages 27-28
of [4]. Numerous mathématicians have since included the proof in their books, often
without credit to Golomb. Roger Nelsen, in [6], gives Golomb’s proof with a wordless
single diagram.
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Golomb’s famous proof starts with the 2 x 2 case shown on the left of Figure 3. This
square is placed in the corner of the order-4 as shown at the center of Figure 3. The
4 x 4 then goes in the corner of an order-8 (shown on the right) and a tromino placed
at the corner of the shaded order-4. We know the dark square can be tiled with any
cell missing, and we know the three unshaded quadrants can be tiled with trominoes
because each has a missing corner cell. By rotating the board, a missing cell at any
spot in the shaded quadrant can be brought to any spot on the order-8 board.

| Il

Figure 3. Golomb’s induction proof.

Orders 5and 7

The order-5 board is next, as 5 is the next unsolved number in the sequence (¥). It
has a neat symmetrical tiling when the center cell is gone, as shown in Figure 4, left.
I have tiled this board with four 2 x 3 tiles. Each is tilable with two trominoes in two
different ways. Using 2 x 3 tiles is a valuable device for solving tromino problems.

‘When the missing cell is the one shown black in Figure 4, center, the cell above it
must be covered by a tromino on either side. In each case, shown here with a tromino
above and on the right, this produces two cells (numbered 1 and 2) that cannot be
covered with a tile. Indeed, the order-5 square can be tiled only when the missing cell
is one of the nine shown in black in Figure 4 right. As a pleasant exercise, see if you
can tile the board when the missing cell is at a corner.

Figure 4. The order-5 square.

The order 7 board is more difficult to analyze. I was unable to find a single dia-
gram that would prove this board tilable, but Golomb sent me his unpublished way of
proving tilability with the aid of three diagrams.
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Figure 5. Golomb’s proof that order-7 is tilable.

His proof goes like this. Figure 5 shows three tilings of the order-7 board. In each
tiling, the 2 x 2 square obviously can be tiled with a tromino so that the missing cell is
at any of the four corners. By rotating the three patterns, the missing cell can be placed
at any spot on the board.

Somewhat more difficult is to find tilings that maximize the number of 2 x 3 tiles.
As a challenge, can the reader find a tiling of the 7 x 7 board using six 2 x 3 tiles and
4 trominoes (see Figure 6)? The solution is unique except for a single reflection (see
page 226).

?

Figure 6. A challenge to the reader.

Note in Figure 5, that in each pattern the number of free trominoes—trominoes not
in any 2 x 3 tile—is always even. This is no coincidence. It led me to the following
trivial little law. When a board’s order is even, the number of free trominoes in a tiling
pattern is odd, and vice versa. When the board’s number is odd, the number of free
trominoes must be even.

The parity proof is simple. If a board’s order is even, after a cell is removed there
will be (n® — 1)/3 trominoes in any tiling, an odd number. Each 2 x 3 tile contains two
trominoes, so the total number of trominoes in 2 x 3 tiles will be even. Subtracting this
number from the odd total of trominoes and you get an odd number of trominoes not
in any 2 x 3 tiles.

Suppose the board’s order is odd. After a cell is removed there will remain an even
number of cells. Subtracting the even number of trominoes in the 2 x 3 tiles leaves an
even number of trominoes not ina 2 x 3 tile.
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Beyond 7

Golomb’s induction proof can be applied to an infinity of other doubling sequences.
In particular, now that we have tiled the 7 x 7 board, we can tile boards of size n x n
where n is of the form 2*7. For example, consider the order-14 board. Divide it into
quadrants with a shaded order-7 board in the top left corner, and attach a tromino to
its lower right corner as before. Because the 7-board is tilable, the proof for order-14
follows, and of course leads by induction to proofs for orders 28, 56, 112, . . ..

A similar proof for the order-10 board can’t be obtained by placing an order-5 in
the corner because order-5 is not tilable, but we can handle it in a slightly different
way. Put in the top left corner an order-8 which we know is tilable. The remaining area
forms a path of width 2 along the bottom and right sides of the large square (see Figure
7). By rotations and reflections, each missing cell in the order-8 can be transferred to
any cell on the board. This leads to proofs for orders 20, 40, 80, and so on. A similar
proof for order-11 has an order-7 square in the corner, and a path of width 4 along
bottom and side. It leads by induction to solutions for orders 22, 44, 88, .. .. Clearly
this technique provides an infinity of doubling sequences for tilable boards. Simply,
put in the top left corner of any board a tilable board with a side equal to or smaller
than the larger board. If you can tile the path it leaves at the bottom and side, then the
board is tilable.

8x8 :

i !
Figure 7. Proof that order-10 is tilable.

Boards with sides that are primes are usually the hardest to tile. Order 17 is solved
by a corner square of side 13 and a path of width 4. Order 19 is solved by a corner
square of order 14, in turn based on order-7, and a path of width 5. (See Fi gure 8.)

The complete result

By working with these patterns I came close, but not close enough, to finding an induc-
tion proof that all deficient squares are tilable except for order-5. A proof was finally
obtained by I. Ping Chu and Richard Johnsonbaugh [1].

Chu and Johnsonbaugh not only took care of all deficient squares, but also all defi-
cient rectangles! Their induction proof is too technical to repeat here. To summarize,
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Figure 8. Order-19 is tilable.

they showed tilability for all m by n rectangles (including squares when m = n) which
have a number of cells that is a multiple of 3 after a cell is removed. Such boards are
tilable if and only if all of the following are true:

1. m is equal to or greater than 2.
2. nis equal to or greater than m.
3. if m is 2, n must be 2,

4. mis not 5.

A 4 x 7 rectangle is the smallest deficient rectangle, not a square, that is tilab]g w_ith
L-trominoes. As another exercise, see how long it takes you to tile it when the missing
cell is at a corner, and there are two 2 x 3 tiles.

Christopher Jensen, in an unpublished paper, showed that if rwo cells are tal_{en frgm
a corner of any board, as shown in Figure 9, the board obviously cannot be tiled with
trominoes. However, if none of these five cases is allowed, a 3m — 1 by 3n + 1 board,
with any two cells missing can be tiled if an only if n = 1 or m and n are each equal
to or greater than 3.

A final word

Kate Jones, who founded and runs Kadon Enterprises, a firm that makes and sells
handsome mechanical puzzles, games, and other recreational math items, has on Ithc
market a game called Vee-21 [5]. The Vee is for V-trominoes, and 21 for the 21 tromino
tiles in the set. The trominoes are brightly colored, and there is an order-8 board on
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Figure 9. Impossible tiling patterns when two cells are missing at a corner.

which to place them. The basic task is to put a monomino (order-1 tile) at any spot

on the board, then cover the remaining 63 cells with the trominoes, thus solving an

order-8 board. A 40-page brochure comes with the set. It contains a short article on

“The Deficient Checkerboard” by Norton Starr, and pictures of rectangular fields that

offer other challenges.

. Our final tiling (see Figure 10) is a beautiful, symmetric tiling of the standard chess-
oard.

Figure 10. An order-8 tiling with no 2 x 3 tiles and 5 rep-tiles.
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Polyomino Problems to Confuse Computers
Stewart Coffin

After a brief career in electronics and manufacturing,
Stewart Coffin turned his lifelong interest in mechanical
puzzles from a hobby into a business, designing unusual
geometrical puzzles and crafting them in fine woods. Now
retired, he has recently written about them in his book
Geometric Puzzle Design. He lives in Andover,
Massachusetts.

For well over a century, puzzle pieces consisting of squares joined together all differ-
ent ways have provided vexation for would be solvers by perversely declining to make
room for each other inside a square or rectangular tray. In recent years, these lov-
able little pieces have played an increasing role in recreational mathematics. Solomon
Golomb, in his 1965 book on the subject, referred to such shapes as polyominoes, and
so by that name they are now commonly known.

o

domino tromino tetromino  pentomino  hexomino

Figure 1. Some polyominoes.

Early on, one popular recreation was counting the possible polyominoes for increas-
ing numbers of squares. Another was discovering which sets of pieces would assemble
into various shaped solutions and in how many different ways, or proving that no such
solution was possible. Now that so much of this can be done virtually instantly by
computer, perhaps a better term for this would be electronic rather than mathematical
recreations. A search for “polyominoes” on the Internet will reveal many examples of
solutions involving very large numbers of pieces, most of which one may assume were
arrived at by computer. But for practical sets of puzzle pieces, simpler is usually better.
Consider, for example, the popular set of twelve pentominoes.

Into how many different rectangular trays can these pieces be packed solid, and in
how many different ways? Since these are typically in the form of physical puzzle
pieces, one assumes they can be rotated and turned over. They can form four differ-
ent rectangles: 3 x 20,4 x 15,5 x 12 and 6 x 10. The complete analysis of possible
solutions to these four shapes dates from around 1960 and marks one of the earliest
uses of computers for solving problems of this sort. Even with 2339 solutions to the
6 x 10, finding just one of them can be frustrating for the novice. But one becomes
much more efficient at this with studious practice, which can be an enjoyable recre-
ation in itself. Just don’t expect to compete with the computer for speed. One program
now in use, Puzzlesolver3D, finds all 2339 solutions at the average rate of one every
85 milliseconds, even on the author’s ancient computer.
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