Exam 3a Calc 1 11/10/2011
Each problem is worth 10 points. For full credit provide complete justification for your answers

1. Evaluate I(3x5 +sec’ x— ex) dx .
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2. Find all intervals on which y = 2x* — 6x + 2 is increasing
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4. Find the x-coordinates of the global maximum and minimum of f{x) = x* — 4x*> + 6 on the
interval [0,3].
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5. For which values of x is f(x) = —— concave up? ( > A -
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6. A rectangular storage container with an open top is to have a volume of 22 cubic meters. The
length of its base is twice the width. Material for the base costs 12 dollars per square meter.

Material for the sides costs 6 dollars per square meter. Find the cost of materials for the
cheapest such container.
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7. Biffis a calculus student at Enormous State University, and he’s having some trouble. Biff
says “Well, crap. They just keep making this calculus stuff harder, you know? I started out
pretty good on this min and max stuff, but now they’re saying there are gonna be true/false
questions on the exam, so they can grade ‘em all with a machine, and the samples they gave
us were just crazy. Like, one was whether there could be a function that had two local mins
with no local maxes. I can take the derivative and set it equal to zero, but I sure don’t know
how to tell anything if they don’t give me a formula!”

Help Biff by explaining whether the situation he describes might occur.
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8. Let a and b be positive real numbers. Evaluate lim .
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9. Two supply centers are located at the points (0,1) and (0,-1). A manufacturing plant will be
located at the point (4,0). Find the shortest collection of roads that connects these three
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10. Suppose we have a function of the form f{x) =x* + ax* + b x + ¢. Are there values for the

constants a, b, and c that allow the function to have a local minimum at (2,5) and local
maximum at (-2,37)?
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