You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 3 points for correct and clearly justified answers. An additional quality point will be awarded to submissions which are presented in a manner appropriate to good college-level work.

1. A ball is bouncing up and down. Each time the ball bounces, it rebounds with 60% of the velocity it had before impact. If the ball is initially thrown downward at 30 feet per second from a height of 20 feet, find how long it takes for the ball to peak for the second time.
2. a) A car is traveling 120 feet per second along the interstate, and suddenly hits its brakes to avoid hitting a baby rhinoceros. If the car decelerates by 20 feet per second each second until coming to a stop, how much distance does it travel before coming to a stop?
b) If the car is traveling 10% faster when the brakes are first applied, how much (in feet and as a percentage) does this affect the stopping distance?
3. Example 3 in $\S 6.1$ is strangely unrealistic, in that it assumes the skydiver instantly reaches terminal velocity. Replace this assumption with a $0 \mathrm{~m} / \mathrm{s}$ starting velocity, followed by (downward) acceleration of $8 \mathrm{~m} / \mathrm{s}^{2}$ for the first 10 seconds, then everything as described in that example. How much difference does it make?
