Quiz la \quad Calculus $1 \quad 9 / 16 / 2011$

Fill each blank below with a limit rule justifying that equality. Each blank is worth 1 point.

$$
\lim _{x \rightarrow 2} 3 x^{2}-5=\lim _{x \rightarrow 2}\left(3 x^{2}\right)-\lim _{x \rightarrow 2} 5
$$

$$
=3\left(\lim _{x \rightarrow 2} x\right)^{2}-\lim _{x \rightarrow 2} 5
$$

$$
=3(2)^{2}-\lim _{x \rightarrow 2} 5
$$

$=3 \cdot 4-5$

$$
=12-5
$$

$$
=7
$$

Algebraic Limit Properties
 Calculus 1
 9/13/11

Let a and c be constants. Then

Constant Rule for Limits: $\quad \lim _{x \rightarrow a} c=c$

Rule X for Limits:

$$
\lim _{x \rightarrow a} x=a
$$

And as long as $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ are real numbers,

Sum Rule for Limits:

$$
\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)
$$

Difference Rule for Limits:

$$
\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)
$$

Constant Multiple Rule for Limits: $\quad \lim _{x \rightarrow a}[c \cdot f(x)]=c \cdot \lim _{x \rightarrow a} f(x)$

Product Rule for Limits:

$$
\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)
$$

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \text { as long as } \lim _{x \rightarrow a} g(x) \neq 0
$$

Power Rule for Limits:

$$
\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}
$$

