Exam 3 Calc 3 12/2/2011

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{F}(\mathrm{x}, \mathrm{y})=<6 x y, 3 x^{2}+3 y^{2}>$ and C is the first-quadrant portion of a circle (centered at the origin) from $(3,0)$ to $(0,3)$.
2. Show that there is no vector field \mathbf{G} such that curl $\mathbf{G}=2 x \mathbf{i}+3 y z \mathbf{j}-x z^{2} \mathbf{k}$.
3. Compute $\int_{C}\langle 4 x+1, x-y\rangle \cdot d \vec{r}$ for a line segment beginning at $(3,0)$ and ending at $(1,2)$.
4. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y)=3 x y \mathbf{i}+6 x^{2} \mathbf{j}$ and C is the path consisting of four line segments joining the points $(0,0),(3,0),(3,2)$, and $(0,2)$ in that order.
5. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y, z)=\langle 4 x, 7 y,-3 z\rangle$ and C is the boundary of the first-octant portion of a sphere with radius 5 (centered at the origin).
6. Show that for any vector field in \mathbb{R}^{3} whose component functions have continuous secondorder partial derivatives, div curl $\mathbf{F}=0$. Make it clear why the requirement about continuity is important.
7. Suppose that S_{1} is the portion of the cylinder $x^{2}+y^{2}=1$ between $z=0$ and $z=3$, and that S_{2} is the portion of the cylinder $x^{2}+y^{2}=1$ between $z=3$ and $z=6$, in both cases with outward orientation.
a) Describe the boundaries of S_{1} and S_{2} clearly, and explain which orientations for those boundaries count as positive.
b) If S is the portion of the cylinder $x^{2}+y^{2}=1$ between $z=0$ and $z=6$, with outward orientation, explain what connection there is between $\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}, \iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}$, and $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
8. Compute $\iint_{S_{L}} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=2 x \mathbf{i}+2 y \mathbf{j}+\mathbf{k}$ and S_{L} is the portion of $z=x^{2}+y^{2}$ between the planes $z=1$ and $z=9$, with upward orientation.
9. Compute $\iint_{S_{a}} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=2 x \mathbf{i}+2 y \mathbf{j}+\mathbf{k}$ and S_{a} is a disc of radius a centered on the point $\left(0,0, a^{2}\right)$ in the plane $z=a^{2}$, with upward orientation.
10. Compute $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=2 x \mathbf{i}+2 y \mathbf{j}+\mathbf{k}$ and S is the portion of $z=x^{2}+y^{2}$ between the planes $z=1$ and $z=9$ along with a disc of radius 1 centered on the point $(0,0,1)$ in the plane $z=1$ and a disc of radius 3 centered on the point $(0,0,9)$ in the plane $z=9$, all with outward orientation.

Extra Credit (5 points possible):
Show that if $f(x, y, z)$ is a scalar function and $\mathbf{G}(x, y, z)$ is a vector field, then $\operatorname{div}(f \mathbf{G})=f \operatorname{div} \mathbf{G}+\mathbf{G} \cdot \nabla f$

