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Remarks

By reading through this text one can acquire a familiarity with the elementary topics of
Graph Theory and the associated (hopefully standard) notation. The notation used here follows
that used by Gary Chartrand at Western Michigan University in the last third of the 20th
century. His usage of notation was in�uenced by that of Frank Harary at the University of
Michigan beginning in the early 1950�s. The text�s author was Chartrand�s student at WMU
from 1973 to 1976.

In order to actually learn any graph theory from this text, one must work through and solve
the problems found within it. Some of the problems are very easy. Most of them are only
a moderate challenge. Less than a half-dozen or so are really hard. Perhaps a consultation
with a Professor of Graph Theory would be in order when they are encountered. As this is
being written (and for the foreseeable future) you could communicate with such a professor
electronically via jbenedic@aug.edu, given that a graph theory professor is not available to you
in any other manner.

Nature of the Text

The discovery method, accredited to R. L. Moore, is the inspiration for the style of the
presentation found within this text. The text is intended for undergraduates. It allows for a
one semester development of the most elementary yet universal concepts of Graph Theory. It
has been used successfully in this manner since Fall 2002 at Augusta State University.

Dedication

This text is respectfully dedicated to Helen Spotts, Bill Lakey, and Gary Chartrand
of Jonesville High School (Michigan) in the early 1960�s, Central Michigan University in the
late 1960�s, and Western Michigan University in the early 1970�s, respectively. Without them I
would have been dead years ago

James M. Benedict
Augusta, Georgia

March, 2002
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1 Introductory Concepts

1.1 Basic Ideas

A digraph, denoted either by D or D = (V;R), is an ordered pair (V;R), where:

i) V is a non-empty and �nite set and

ii) R is a (possibly empty) relation on V .

V is called the vertex set of D; and R is called the arc set (of D). A member of V is called a
vertex (of D). Two or more members of V are called vertices.
We are not going to study digraphs here. However, Graph Theory is a sub�eld of Digraph

Theory. Graphs are formed when R happens to be a symmetric and irre�exive relation on V .
Here is how that happens. Graphs are not supposed to have loops. That is why R must be
irre�exive. Now, given that R is symmetric, then whenever (u; v) 2 R it follows that (v; u) 2 R.
To form a graph, we �shrink�the symmetric pair to a single undirected entity called an edge.
We write uv (or vu if we feel like it) to mean f(u; v); (v; u)g or, more succinctly, to mean fu; vg.
This leads to the following de�nition.
A graph, denoted either by G or G = (V;E), is an ordered pair (V;E), where:

i) V is a non-empty and �nite set and

ii) E is a (possibly empty) set containing 2-element subsets of V:

As hinted above, a member of E is called an edge (of G). Two or more members of E are called
edges. We call E the edge set of G. Sometimes the notation V (G) is used for V . Sometimes
the notation E(G) is used for E. This will usually happen when there are two or more graphs
in a particular discussion.
Given G = (V;E), the order of G is the integer jV j. It is denoted by p or sometimes by

p(G). The size of G is the integer jEj. It is denoted by q or q(G). Such a G can be called a
(p; q)-graph.

Problem 1 WICN (Work In Class Now) Consider the graph G = (V;E), and suppose that
V = fa; b; cg. For every possible size, give an example of a possible edge set for G .

Problem 2 Suppose the graph G is of order p. What is the smallest size possible for G? The
largest?

Problem 3 How many non-identical graphs exist having vertex set fa; b; cg? Prove, using brute
force, that you are correct. (The term �brute force� is used when you are to show all possible
cases. There is no �elegant theory�involved in such a proof.)

A rendering of a graph G of order p is accomplished by the following:

1. Pick p distinct points in a plane (or other surface).

2. Label the points with the members of V (G). That is, set up a 1-1 onto function between
V (G) and the chosen points. These points are now thought of as the vertices of the graph.
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3. Given u 2 V (G) and v 2 V (G), draw a Jordan arc (a not too wiggly continuous line)
having u and v as endpoints if and only if uv 2 E. These lines are now thought of as
the edges of the graph. To have these edges intersect only at vertices is a goal, but not a
requirement. However, never have an edge run through any vertex.

We will usually treat the rendering of a graph as if it were actually the graph itself.

Problem 4 WICN Create (the rendering of ) a (5; 9)-graph G where the intersection of edges
occurs only at vertices.

Problem 5 WICN Give a (4; 6)-graph, G1 having V (G1) = fa; b; c; dg where all edges are
straight line segments and where there is exactly one instance of edges crossing at non-vertex
points. (You are to give a rendering, even though we talk of making a graph. Remember, a graph
is really a pair of special sets. We, however, are psychological people, so we treat the rendering
as the graph itself.)

Problem 6 WICN Give a (4; 6)-graph, G2 having V (G2) = fw; x; y; zg where all edges are
straight line segments and where edges intersect only at vertices.

There is a moral to the above two problems. It is that a rendering of a graph can be
psychologically misleading as to the � true nature�of the graph.

Problem 7 WICN Consider the last two problems. Find a function

f : V (G1)
1�1�!
onto

V (G2) such that

uv 2 E(G1) () f(u)f(v) 2 E(G2).

1.2 Graph Theoretic Equality

Given graphs G1 and G2 and the function f : V (G1) �! V (G2) we call f an isomorphism
from G1 to G2 if and only if

i) f : V (G1)
1�1�!
onto

V (G2) and

ii) uv 2 E(G1) () f(u)f(v) 2 E(G2).

When such an isomorphism function exists we say G1 is isomorphic to G2.

Problem 8 Suppose for the graphs G1 and G2 we have that G1 is isomorphic to G2. Prove that
G2 is isomorphic to G1.

By the above problem, we are allowed to simply say that G1 and G2 are isomorphic (that is,
each one is isomorphic to the other one) when there is an isomorphism from G1 to G2. One can
also say that G1 is isomorphic with G2. The order in which isomorphic graphs are mentioned
is not important. The next problem shows that isomorphic graphs can be rendered in such a
way as to have the same � shape�.
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Problem 9 Suppose that G1 and G2 are isomorphic graphs. Prove that there is a rendering of
G1 and a rendering of G2 each of which uses exactly the same vertices (points) and edges (lines)
in the surface used for the renderings.

Recall that two sets are di¤erent if and only if the elements of one of the sets are not the
exact same elements in the other set. Also, two ordered pairs are di¤erent if and only if the
�rst component of one of the ordered pairs is not the �rst component of the other ordered pair,
or the second component of one of the ordered pairs is not the second component of the other
ordered pair (or both, of course).

Problem 10 Let V = fv1; v2; :::vpg. Let:

G = fG jG is a graph with V (G) = V g.

De�ne the relation R on G by:

(G1; G2) 2 R if and only if G1is isomorphic to G2.

Prove that R is an equivalence relation on G. Now, suppose that G1 and G2 are in the same
equivalence class of R.

From the last two problems, we �nd that all graphs in some given equivalence class, even
though no two are identical, do possess the same inherent information, since (when rendered)
they can possess the same �shape�. For this reason, we write G1 = G2 when G1 is isomorphic
to G2, even in the case that G1 is not identical with G2. In other words, when we write G1 = G2
we mean that G1 and G2 are equivalent but not necessarily identical.
There are other conventions used by graph theorists. For example, the renderings of graphs

are often thought of as the graph itself. Often, the vertices will not be labeled in the renderings.
We will call the points the vertices and we will call the lines the edges of the graph. When there
are no extraneous crossings of edges, we say that the graph is embedded in the surface.
We speak of �drawing the graph�rather than �give a rendering of the graph�. When the

edge e1 and the edge e2 have exactly one vertex in common, we say e1 is adjacent to (or with)
e2. When the edge e has end-vertices u and v, we write e = uv and say u is adjacent to (or
with) v. We say u (and similarly v), is incident to (or with) e; we say e is incident to (or
with) u (or v).

Problem 11 Draw all possible (pair-wise non-isomorphic unlabeled) graphs having 5 vertices.
How many are there? How many would you have to draw if the vertices were labelled and we
asked for all non-identical graphs?

Problem 12 Let V = fv1; v2; :::vpg. How many non-identical graphs exist having the vertex set
V and having size q? Prove your answer is correct.

Problem 13 Let V = fv1; v2; :::vpg. How many non-identical graphs exist having the vertex set
V ? (The question �How many non-isomorphic graphs exist on p vertices?�is actually a bit too
hard for an undergraduate class.)
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Problem 14 The following statement is obviously true. Modify it by striking out exactly two
of the numbered relators, thereby creating a conjecture. Create a theorem by proving that your
conjecture is correct.
The number of non-isomorphic (p; q)-graphs is

i) less than,

ii) equal to, or

iii) greater than

the number of non-isomorphic (p;
�
p
2

�
� q) graphs.

1.3 Degrees of Vertices

Problem 15 WICN Draw a single graph G having all of the following properties: G contains
at least one vertex incident with exactly one edge, at least one vertex incident with exactly two
edges, and at least one vertex incident with exactly three edges.

Given the graph G with v 2 V (G) and with v incident with exactly n edges of G, we say
the degree of v in G is n. This is written as degG(v) = n. When it is clear which graph G is
being referenced, it is often more simply written as degG(v) = n. The smallest integer that is a
degree of the graph G is denoted �(G). It is called the min degree of G. The largest integer
that is a degree of the graph G is denoted �(G). It is called the max degree of G. A vertex
of degree 0 is called an isolated vertex. A vertex of degree 1 is called an end-vertex.

Problem 16 Suppose G is a (p; q)-graph with V (G) = fv1; v2; :::; vpg. Prove that 
pX
j=1

degG(vj)

!
= 2q.

For the graph G containing the vertex v, we call v an even vertex in G when degG(v) is an
even integer. As you might expect, when degG(v) is an odd integer, we call v an odd vertex
in G.

Problem 17 Prove that every graph has an even number of odd vertices.

Suppose G is a graph with V (G) = fv1; v2; :::; vpg. Take degG(vk) = dk for each k. The list
d1; d2; :::; dp is called the degree sequence of G.

Problem 18 WICN Draw a graph G whose degree sequence is 3, 2, 2, 3. Relabel the vertices
so that the degree sequence is 2, 2, 3, 3.

What we learn from the above problem is that the vertices of a graph can always be relabeled
if, necessary, so that the degree sequence is of the form

�(G) = d1 � d2 � ::: � dp = �(G):

The sequence of integers d1; d2; :::; dp is called graphical when there exists a graph G having
vertices labelled v1; v2; :::; vp where degG(vk) = dk for each k.
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Problem 19 Prove or disprove each of the following:
A.] There exist integers n and p such that the sequence
n; n+ 1; n+ 2; :::; n+ p� 1 is graphical.
B.] There exist integers n and p, with p � 2, such that the sequence
n; n+ 1; n+ 2; :::; n+ p� 1 is graphical.

Problem 20 Consider the sequence d1 � d2 � ::: � dp. Prove that the sequence is graphical
only if:

i) each dk is a non-negative integer,

ii)

 
pX
k=1

dk

!
is even, and

iii) dp is less than p.

Prove or disprove that the converse is true.

Problem 21 Suppose p � 2 and dp � 1. Consider the sequence S1 given by d1; d2; :::; dp,
where d1 � d2 � ::: � dp. Further, consider the sequence S2 given by

d1; d2; :::; d(p�dp�1); d(p�dp) � 1; d(p�dp+1) � 1; :::; d(p�1) � 1.

Prove that S1is graphical if and only if S2 is graphical.

Problem 22 Which of the following are graphical sequences. Why or why not?
A.] �3;�1; 0; 1; 2; 3
B.] 1; 1; 72
C.] 1; 1; 1; 1; 3
D.] 1; 2; 2; 2; 3
E.] 0; 0; 1; 2; 2; 2; 3
F.] 0; 1; 1; 1; 2; 2; 2; 3; 3; 4; 7
G.] 0; 0; 1; 1; 1; 2; 2; 2; 3; 3; 3; 3; 5

Problem 23 Prove or disprove the following conjecture.
If G1 and G2 are graphs with the same degree sequence, then G1 = G2.

Problem 24 Prove that the sequence d1; d2; :::; dp is graphical if and only if the sequence p �
d1 � 1; p� d2 � 1; :::; p� dp � 1 is graphical.

When �(G) = �(G) we call G a regular graph. We speak of G as being n-regular, where
n is the common degree of each vertex of the graph G. The complete graph on p vertices
has all possible edges. It is denoted as Kp. It is a (p � 1)-regular graph. When a graph is
3-regular, it is called a cubic graph. Of course cubic graphs have an even number of vertices.
Can you recall why that is?
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1.4 Subgraphs

For the graphs G and H, we say G is a subgraph of H (H is a supergraph of G) written
as G � H (H � G) when:

i) V (G) � V (H) and
ii) E(G) � E(H) both occur.

Whenever G � H and given G1 = G, we often say G1 � H rather than saying G1is isomorphic
to a subgraph of H. (Similar comments hold for the � supergraph�phraseology.) Given that
the graph G is of order 2 or greater and contains the vertex v and the edge e, the graphs G� v
and G� e are de�ned as:

V (G� v) = V (G)� fvg
E(G� v) = E(G)� fy j y is an edge incident with vg
V (G� e) = V (G)
E(G� e) = E(G)� feg.

The graph G�X is de�ned analogously for any X � V (G) as well as for any X � E(G).

Problem 25
A.] Consider K4 � fe1; e2g where e1 and e2 are non-adjacent edges. Suppose the vertices are
labelled by fa; b; c; dg. How many non-identical such graphs K4 � fe1; e2g exist. Justify your
answer. Prove or disprove that they are all pair-wise isomorphic.
B.] Prove or disprove that (Kp � fv1; v2; v3g) = K(p�3) where p � 4.

Suppose that u and v are non-adjacent vertices of the graph G. (This last sentence tells us
that uv =2 E(G).) Call this missing edge e. That is, e = uv. The graph G+ uv, also written as
G+ e, is de�ned by:

V (G+ e) = V (G) and

E(G+ e) = E(G) [ feg.

Note that G � G+ e and yet V (G) = V (G+ e). One is a subgraph of the other yet they have
the same vertex set (not just a proper subset). Likewise, letting e be any edge of G, we have
that G � e � G and V (G � e) = V (G). Whenever G � H with V (G) = V (H) we call G a
spanning subgraph of H.

Problem 26 WICN Draw all non-isomorphic spanning subgraphs of K4.

Consider the graph G and the set X where X 6= � and X � V (G). There exists a special
subgraph of G called the subgraph of G induced by X. It is denoted by hXi. This graph
is de�ned as follows:

V (hXi) = X and

E (hXi) = fe j e 2 E(G) and e is incident with two vertices in Xg.

We call hXi a vertex-induced subgraph of G, or more simply, an induced subgraph of G.
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Problem 27 Prove or disprove: H is an induced subgraph of G if and only if there exists a set
W such that W � V (G) and H = G�W .

We now move to the edge analogue of the above concept. Consider the graph G and the set
X where X 6= � and X � E(G). There exists a special subgraph of G. It is (as above) called
the subgraph of G induced by X. It is denoted (again, as above) by hXi. This graph is
de�ned as follows:

V (hXi) = fv j v is incident with one or more edges of X g and
E (hXi) = X.

We call hXi an edge-induced subgraph of G. (There is no simpli�cation of this terminology.)

Problem 28
A.] Prove or disprove that H is an edge-induced subgraph of G if and only if there exists a set
W such that W � E(G) and H = G�W .
B.] Draw all edge-induced subgraphs of K4.

For the next two problems, note that if X \ Y 6= � then of course X 6= � and Y 6= �.

Problem 29 Consider the graph G having X � V (G) and Y � V (G) where X \ Y 6= �.
A.] Prove that E (hXi) \ E (hY i) � E (hX \ Y i).
B.] Prove that E (hXi) \ E (hY i) � E (hX \ Y i).

Problem 30 Consider the graph G having X � V (G) and Y � V (G) where X 6= � and Y 6= �.
A.] Prove that E (hXi) [ E (hY i) � E (hX [ Y i).
B.] Prove by giving an example that E (hXi) [ E (hY i) � E (hX [ Y i) might not happen.

Problem 31 WICN Give an example of a spanning, 2-regular subgraph
of K6 � e.

Problem 32 WICN Create a graph G. Find a regular supergraph of G.
Find one that is spanned by G.

Problem 33 Prove or disprove: Every graph G is a spanning subgraph of some graph H where
H is regular of degree �(G).

Problem 34 Prove or disprove: Every graph G is a vertex-induced subgraph of some graph H
where H is regular of degree �(G).

1.5 The Complement of a Graph

Given the graph G, the complement of G is denoted G. This graph is de�ned by:

V
�
G
�
= V (G) and

E
�
G
�
= fuv ju 2 V (G), v 2 V (G), and uv =2 E(G).

One can think of G as being the graph formed by deleting from Kp those edges that would
induce a copy of G, where of course p = jV (G)j.
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Problem 35 WICN Given the (p; q)-graph G, �nd a formula for
��E �G���.

Often one writes q to stand for
��E �G���.

Problem 36 You already have drawn all graphs up through order �ve. Redo that work so that
each graph is paired with its complement.

When the graphs G and H have disjoint vertex sets, the graph G [H is de�ned by:

V (G [H) = V (G) [ V (H) and
E(G [H) = E(G) [ E(H).

The union notation is not used when G and H share one or more vertices. Note that Kp is an
edgeless graph having p isolated vertices. This seems to be p copies of K1so we write

Kp = pK1 = K1 [K1 [ ::: [ K1

where there are p copies of K1 in the union process. By the very notation, we know we are
choosing a separate and new vertex for each copy of the K1. For the positive integers p1; p2; :::pn,
the graph K (p1; p2; :::pn) is de�ned by being the complement of Kp1[Kp2[ :::[ Kpn. The graph
K (p1; p2; :::pn) is called a complete-multi-partite graph. When the value of n is important it
is called a complete n-partite graph. Subgraphs of K (p1; p2; :::pn) formed by removing edges
are called multi-partite or n-partite graphs. (They are no longer �complete�.) When n = 2,
the graphs are called bipartite, or complete-bipartite as the case may be. The complete-
bipartite graph K(1; n) is called a star graph. Given the multi-partite graph G, a partite set
is a maximal subset of V (G) with respect to the property of inducing an edgeless subgraph.
Bipartite graphs have two partite sets. Similarly, n-partite graphs have n distinct partite sets.

Problem 37 WICN Fill in the blanks. The complete-multi-partite graph
K (p1; p2; :::pn) is in fact a complete graph if and only if .
When K (p1; p2; :::pn) is in fact complete then K (p1; p2; :::pn) = .
Be able to justify your answers.

Problem 38 What is the order of K (p1; p2; :::pn)? What is the size
of K (p1; p2; :::pn)?

Problem 39 Find a supergraph H of K(1; 3) of the smallest possible order such that K(1; 3)
is an induced subgraph of H and H is 3-regular. Justify your results. Generalize your ideas in
order to �nd a supergraph H of K(1; n) of the smallest possible order such that K(1; n) is an
induced subgraph of H and H is n-regular. Justify your results.

A graph G is self-complementary if and only if G = G.

Problem 40 WICN Find all self-complementary graphs up through order �ve.

Problem 41 Suppose that G is a self-complementary graph of order p. Prove that either 4
divides p or 4 divides p� 1. (Hint, we know q = q and we know the value of q + q.)
Problem 42 Suppose that G is a self-complementary graph of order p where 4 divides p. Prove
there exists a self-complementary graph of order p+ 1.

Problem 43 Find every cubic graph of order p and size 2p � 3. Explain how you know that
you have found them all. (Hint, think of the complement.)

End of Section One
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2 Special Subgraphs

2.1 Walks

Let G be a graph containing the vertices u and v. (These vertices need not be distinct.) A
u� v walk in G is an alternating sequence (or list) of vertices and edges of G, beginning with
uand ending with v, such that each edge of the sequence is directly preceded and followed by
the vertices for that edge. For example, given the graph G = (fa; b; c; dg; fab; ac; ad; bc; cdg), the
walk c; ac; a; ab; b; ab; a; ad; d can be constructed. The length of a walk is the number of edges,
including repeats, contained in the list. (When you walk 20 yards, turn around and come back
for the glasses you forgot, then re-walk the 20 yards and 300 more yards to your o¢ ce, then
you have walked 360 yards total. Same with graphs.) The walk given from the above graph
has a length of 4. Length 0 walks are possible; just pick a vertex and stay there. We might
name any given walk, often by a capital letter. For example we could write �Consider the walk
W : c; ac; a; ab; b; ab; a; ad; d.�and then refer to the whole walk by just referring to W . (Read
�given by�for the colon following the W .)

Note that in the above graph G, it is impossible to walk to vertex d from vertex b using a
walk of length 1. This is because the edge bd is not in the graph. The vertices c and d are called
end-vertices of W . The vertex c is the initial vertex of W . The vertex d is the terminal
vertex of W . If one walks from vertex c directly (in one step) to vertex a, it is clear that the
edge ac must have been used. For this reason, it is redundant to list the edges. We know the
walk by knowing the vertices. From now on, we will write only the vertices and the necessary
commas when making the list that describes the walk. Doing this, the length of the walk is the
number of commas used in the list. For example, consider the length 4 walk of G known as
W : c; a; b; a; d. This is the same walk we considered before, just written more concisely.
Observe that the edge ab appears twice on the walk as does the vertex a. When no edges

are repeated in a walk, the walk is called a trail. When no vertices are repeated in the walk,
the walk is called a path. The symbol Pn is often used to denote a path of length n. (Note:
all paths are trails. Why?)
When the initial vertex of a walk is the same as the terminal vertex for that walk, the walk

is said to be a closed walk. Each closed trail is called a circuit. It is incorrect to speak of
closed paths. (Why?) However, consider a path, say W1 : u = w1; w2; w3; ::::; wn = v, where
n � 3. Note that W1 is a u� v path of length n� 1 and u 6= wj for each j with 2 � j � n. Now
suppose the edge uv is in the graph containing W1. Note that uv is not an edge of W1. (Why
is this true?) Now suppose W1 is extended to the walk u;w2; w3; ::::; wn�1; v; u by adding the
single edge uv and the new terminal vertex u, thus closing the walk. There is now exactly one
occurrence of a repetition of vertices, there are no occurrences of a repetition of edges, and by
deleting any vertex, the path Pn�1 is formed. The closed walk just formed is called a cycle or,
sometimes, an n-cycle. An n-cycle has length n and is often denoted by Cn. We might write

Cn : u = w1; w2; w3; ::::; wn = v; u

to denote a cycle of length n. Note that

wk; wk+1; ::::; wn�1; v; u; w2; w3; ::::; wk and

wk; wk�1; ::::; w2; u; v; wn�1; wn�2; ::::; wk
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are both correct depictions of the same cycle Cn. That is, any vertex can be used for the initial
and terminal vertex of the cycle. Also, the cycle can be traversed in either of two directions.
Given the structure u; x1; x2;; :::; xm; v of vertices and edges of some graph G, we will refer to

the structure as a walk, a trail, or a path, (depending of course on what happens to be repeated)
when u 6= v. In the case that u = v we will refer to the structure as a closed walk, a circuit, or
a cycle (again depending upon what happens to be repeated). The edge-induced subgraph of
some given graph G induced by the edges of a trail, path, circuit, or cycle, will also be referred
to as a trail, path, circuit, or cycle, respectively.

Problem 44 Prove that every u� v walk W contains a u� v path.

Problem 45 Prove that every circuit contains a cycle.

Problem 46 Let G be a graph containing a trail in which one or more vertices are repeated.
Prove that the trail contains a cycle.

We call K1 the trivial graph. All other graphs are called nontrivial.

Problem 47 Let G be a nontrivial graph. Prove that G is bipartite if and only if G contains
no cycles of odd length.

2.2 Components

The graph G is called connected when there is a u � v path in the graph for every pair of
distinct vertices u and v in G.

Problem 48 Let G be a connected graph containing the vertices u and v. Prove that there is a
u� v walk in G which contains all of the vertices of G.

Problem 49 Let G be a graph of order p such that �(G) � (p�1)=2. Prove that G is connected.

Problem 50 Let G be a (p; q)-graph such that q < (p � 1). Prove that G is disconnected.
(Disconnected means not connected.)

Problem 51 Does a graph G exist such that G and G are both disconnected?

In a connected graph, the distance from vertex u to vertex v is denoted by d(u; v) and
is the length of any shortest possible u� v path in the graph. Since d(u; v) = d(v; u), we often
refer to d(u; v) as the distance between u and v.

Problem 52 Suppose G is a disconnected graph. Find the theoretical maximum distance in
G between vertices. Find graphs G and G such that the theoretical maximum distance in G is
actually attained.

When a graph G is disconnected, it has subgraphs that are maximal with respect to the
property of being connected. Any such maximal connected subgraph is called a component of
G. The number of components of G is denoted by c(G). Obviously c(G) = 1 if and only if G is
connected.

Problem 53 WICN Give an example of a graph G of order 7 having c(g) = 3.

Problem 54 WICN Suppose G = K(p1; p2; :::; pn). Compute c(G).

10



2.3 Blocks of a Graph

A vertex v of the graph G is called a cut-vertex of G when c(G � v) > c(G). Notice that
isolated vertices are not cut-vertices. Moreover, Kp has no cut vertices. At the other extreme,
every vertex, with two exceptions, of the nontrivial path Pn is a cut-vertex. Yes, this is the
other extreme as problem 56 shows.

Problem 55 Suppose G is a graph containing the distinct vertices u and v. Further, suppose v
is a cut-vertex of G�u. Can we conclude that v is a cut-vertex of G? Justify your answer. Now
suppose that v is a cut-vertex of G. Can we conclude that v is a cut-vertex of G � u? Justify
your answer.

Problem 56 Prove that every nontrivial graph has at least two vertices that are not cut vertices.

Problem 57 Prove that a vertex v of a connected graph G is a cut-vertex of G if and only if
there exist vertices u and w, neither of which is v, such that v is on every u� w path of G.

The removal of a cut-vertex v from the graph G must disconnect a component of G. (Why?)
What about such an edge? We call the edge e a bridge (not a cut-edge) of the graph G when
c(G� e) > c(G).

Problem 58 Let e = uv be a bridge of the graph G. Prove that c(G� e) = c(G) + 1. Further,
prove that u and v are cut-vertices of G if and only if degG(u) > 1 and degG(v) > 1.

Problem 59 Prove that an edge e of a connected graph G is a bridge of G if and only if there
exist vertices u and w, such that e is on every u� w path of G.

Problem 60 Let e be an edge of the graph G. Prove that e is a bridge of G if and only if e is
on no cycle of G.

Problem 61 Determine the maximum number of bridges possible in a nontrivial graph G of
order p.

Problem 62 Prove that every connected (p; p� 1)-graph, p � 3, contains a cut-vertex.

Problem 63 Prove that every connected (p; q)-graph, 3 � p � q, contains a cycle.

A nontrivial connected graph that has no cut vertices (when considering just the graph itself�
no more and no less) is called a block. For example, C5 is a block whereas P5 is not a block.
Note that the trivial graph is not a block and that K2 is a block. Be careful. Blocks can have
vertices that become cut vertices when the block is considered to be inside of a supergraph.
Contemplate the following example: connect a C5 to a K2 by gluing one of the vertices of

the K2 to one of the vertices of the C5. Call the resultant graph G. (Do you see that p(G) = 6?)
Denote by v the vertex of G that is in both the C5 and the K2. It is important that you see that
the C5 and the K2, although they are now subgraphs of G, still retain the property of being
blocks when considered as individual graphs. However, they both contain the vertex v which is
a cut-vertex of G. The �of G�portion of the last sentence is of extreme importance. One must
consider the graph in question when considering any graphical parameter. Yes, v is a cut-vertex
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of G, and yes, v is not a cut-vertex of C5 and �nally, yes, v is not a cut-vertex of K2. Enough
said.
Now, given that G is a connected nontrivial graph that is not a block, then G will have

subgraphs that are blocks. Suppose G has 5 vertices, 4 of which induce the graph K4� e, while
the �fth vertex is adjacent with exactly one of the 4 vertices of the K4� e. We see that K3 is a
block and K3 is a subgraph of G. However, we do not call the K3 a block of G. This is because
there is a subgraph H of G that is a supergraph of the K3 in G that is itself a block. This is the
subgraph H = K4 � e. Now, if we look at any supergraph of the K4 � e in G, we note that the
bigger graph containing the K4 � e does not have the property of being a block. We have gone
as far as we can go. For this reason, K4 � e is called a block of G. Similarly, so is K2. (Why?)
For the formal de�nition, we call the graph B a block of the graph G when B is a block in
its own right as well as being a subgraph of G and, even more, B is maximal with respect to
the property of being a block and a subgraph of G.

Problem 64 Suppose B1 and B2 are blocks of the graph G.
A]. Prove that jV (B1) \ V (B2)j � 1.
B]. Suppose V (B1) \ V (B2) = fvg Prove that v is a cut-vertex of G.
C]. Prove that when a connected graph has exactly two blocks, then necessarily they share exactly
one vertex, a cut-vertex.

Problem 65 Suppose that G is a graph having at least one edge. Prove that the blocks of G
partition the edge set of G. (There is a di¢ culty here in that the word �block� is being used
two ways. The blocks of a partition are not graphs. The blocks that are subgraphs of G are not
blocks of any partition. However, after working this problem, you should be able to guess why
the blocks of a graph were called �blocks� instead of something else.)

Problem 66 Prove that a graph G of order p � 3 is a block if and only if every two vertices of
G lie on a common cycle of G.

Two u�v paths in a graph G are called vertex-disjoint if they have no vertices in common,
except of course u and v.

Problem 67
A]. Prove that a Graph G of order p � 3 is a block if and only if every two vertices u and v of
G lie on two vertex-disjoint paths.
B]. Suppose G is block of order p � 3, containing the distinct vertices u and v. Further, suppose
P is a u � v path in G. Does there always exist a u � v path Q in G such that P and Q are
vertex-disjoint?

Problem 68 Suppose G is a connected graph having at least one cut-vertex. Prove that G has
at least two blocks each of which contains exactly one cut-vertex of G.

Any block that has exactly one cut-vertex of some supergraph is called an end-block of the
supergraph.

Problem 69 Let B be an end-block of the connected graph G where p (G) � 3. Suppose v is the
cut-vertex of G in B and X = V (B � v): Prove that G�X and hV (B)i are connected graphs.
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Problem 70 Suppose G is a connected graph having at least one cut-vertex. Prove that G has
a cut-vertex v for which, with at most one exception, all blocks of G containing v are end-blocks.

Problem 71 Let G be a graph with V (G) = fv1; v2; v3; : : : ; vpg with p � 6. Say G has four
blocks and that each vk lies in exactly one block, 3 � k � p, while each of v1 and v2 belong to
exactly two blocks. Prove that G is disconnected.

Consider the block B. Perhaps a vertex of B could be removed, say u, whereby B�u is still
a block. (Try this for K4 � e. You have two possible such vertices.) Repeat the procedure on
the new graph. Keep it up until you have found a graph B� such that B� is a block yet for each
vertex u of B� we have B� � u is not a block. Such a block is called a critical block. That is,
the graph G is a critical block if and only if G is a block and for each vertex u of G, G � u is
not a block. (K2 and Cn, n � 4, are examples of critical blocks.) Similarly, the graph G is a
minimal block if and only if G is a block and for each edge e of G, the graph G � e is not a
block. (Again K2 and Cn, n � 4, are examples of minimal blocks.)

Problem 72 Find an example of a minimal block that is not a critical block. Find an example
of a critical block that is not a minimal block.

Problem 73 Find graphs G, other than K2 and other than Cn, n � 4, for which G is both a
critical and a minimal block.

Problem 74 Let G be a block that is neither critical nor minimal. Of course G contains at
least one subgraph that is a critical block. Is it unique, or can G have two di¤erent (i.e. non-
isomorphic) subgraphs for which each is a critical block? What about minimal?

Problem 75 Suppose G is A] a critical block or B] a minimal block of order at least 4. Prove
G contains a vertex of degree 2.

Problem 76 WICN Suppose that G is a block with �(G) � 3. Prove that G is neither critical
nor minimal.

End of Section Two
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3 Three Famous Results and One Famous Graph

3.1 The Four-Color Theorem

Consider a map, say of some geographical entity, from perhaps a social studies class. To be
more de�nite, consider a map of Georgia on the wall of some classroom. Suppose the purpose
of the map is to help students study the structure of the counties of Georgia. (These counties
are geographical subdivisions of Georgia.) Typically such maps are colored so that di¤erent
colors are used to color counties that share common borders. Lets call such a coloring of a map
a proper coloring. Our hypothetical map is given a proper coloring so that people can be
located at somewhat of a distance from the map and still be able to easily pick out the region
of Georgia that belongs to any given county. After all, if counties that shared a common border
were given the same color, people, say, in the back of a classroom would not be able to see the
tiny black line that designates the border. It would seem that there was one big county instead
of two adjacent counties.
For purpose of saving resources, it is natural to want to know the fewest number of colors

needed to produce a proper coloring of the regions of any given map. Believe it or not, the
answer is that given merely four colors, one can properly color each and every map, so long
as that map is drawn on a surface equivalent to either a sphere or a plane. The fact that
the desired �map coloring number� is four has been believed since the mid 1850�s. The �rst
published �proof�was created by Alfred Bray Kempe (pronounced Kem-pea),a London lawyer
and former mathematics student. Seeking to provide the answer to the so called �four color
problem�, a problem whose existence dates from around 1852, Kempe�s work appeared in 1879.
Unfortunately for Kempe, in 1890 Percy J. Heawood provided a counter-example to Kempe�s
attempted proof. Heawood had discovered a subtle �aw in the work of Kempe. It was so subtle
that the mathematics community of the time overlooked the �aw for eleven years. The result
escaped �nality until 1976 when Wolfgang Haken and Kenneth Appel announced that their
work, performed chie�y on computers, resolved the matter. Pretty much, they had reduced
all possible maps to around two thousand special cases. Then they used computers to provide
colorings of each of the cases. The computer processing took two years. Only four colors were
required. Mathematicians still seek a more typical proof for this problem.
For more information on the four-color problem, there is an excellent article, written by

Timothy Sipka, on page 21 of the November 2002 issue of math HORIZONS , published by the
Mathematical Association of America. It features the work of both Kempe and Heawood. So
as to be understood by a wider audience, the article is not written in a graph-theoretical style.
Instead, wisely, Sipka chose to present the material in a format similar to that used by Kempe
himself. Every graph theorist should read Sipka�s article. The ensuing material in this section
consists of graph theoretic notions for coloring. The ideas of Kempe and Heawood are then
presented from the point of view of graph theory.
Given a map (say of the state of Georgia with the counties as regions) on a surface equivalent

to a sphere or a plane, we create a graph G as follows:

i) the vertices of G are the regions of the map;

ii) two vertices are adjacent in G if and only if the corresponding

regions share a common border of some positive length.

It should be clear that such a graph can be embedded (see page 3) in the surface with no
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extraneous crossing of edges. (That is, edges intersect only at vertices.) The vertices are actual
points of the surface. The edges are Jordan arcs in the surface connecting the vertices. Now,
any graph having the property of being able to be embedded in a surface equivalent to a plane
or a sphere (remember, with no extraneous edge crossings), whether coming from a speci�c map
or not, is called a planar graph. A planar graph can be embedded in the surface. However,
nobody says it must actually be embedded. A plane graph is a graph that actually is embedded
in a surface equivalent to a plane or a sphere.
A coloring of a graph is an assignment of colors to the vertices of the graph, one color per

vertex, so that each edge has two di¤erent colors assigned to its end-vertices. Obviously, all
graphs can be colored. It should be obvious that if a graph G has p vertices, then G can be
colored given that there are p colors from which to choose. The problem is to �nd the fewest
number of colors needed to color a given graph. This number is called the chromatic number
for the graph. For the graph G, the chromatic number is denoted by �(G).

Problem 77 WICN Show that �(Kp) = .

Problem 78 WICN Show that �(Cn) =

(
If n is even

if n is odd.

The next problem is something of an aside to the current material. It is included simply
to help visualize the structure of a graph that is revealed by the coloring of the vertices of the
graph. What the problem is attempting to get at is that the concept of chromatic number is
more than just some silly coloring game. For example, when we know that �(G) = 2, we also
automatically know that G is bipartite. As another example, by a coloring of C5 using 3 colors,
we know that C5 � K(1; 2; 2). (Betcha hadn�t thought of that before, huh? Exactly which edges
belong to K(1; 2; 2) that are not in C5? Food for thought.)

Problem 79 Suppose �(G) = n for the graph G. Suppose G has been colored by the n colors
c1, c2, ... , cn. Partition the vertices into color classes V1, V2, ... , Vn so that the vertex u 2 Vk
if and only if u is colored with the color ck. Prove that each graph hVki is edgeless. Now, suppose
that pk = jVkj for each k where of course 1 � k � n. Demonstrate that G � K(p1; p2; :::pn).

Now we return to the real deal. As far as graph theorists are concerned, we would love to
be able to display a somewhat short, self contained proof that �(G) � 4 whenever G is a planar
graph. Through the year 2005, that is a bit too much for which to hope. For now, we await
further developments and, to get a �avor of what this work is like, settle for demonstrating, as
Heawood did by following ideas of Kempe, that �(G) � 5 for any planar graph G. But �rst, an
easy result shows that if we were professional plane graph colorers, 5 is not too far away from
the actual number of colors we would have to keep on hand.

Problem 80 WICN Find planar graphs having a chromatic number of 4.

We now start to work on establishing the �ve-color theorem. Some preliminary results are
needed. Leonhard Euler was able to solve the following problem in 1752.

Problem 81 Suppose G is a connected plane (p; q)-graph. Let r be the number of regions in
the embedding of G. Establish that p� q + r = 2.
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Since the formula r = 2� p+ q is well de�ned for any (p; q)-graph, we de�ne the number r
for any planar graph by r = 2� p+ q. We know that r will be the number of regions produced
if we ever get around to actually embedding the planar graph to create a plane graph version
of the planar graph.

Problem 82 Suppose that G is any planar (p; q)-graph with p (G) � 3. Prove that q � 3p� 6.
(Hint, create the graph G� from G by adding to G all possible edges yet still allowing for G�

to be planar. Show that G� is connected and in any embedding has only triangles for regions.
Continue on from there.)

Problem 83 Let G be any planar graph. Prove �(G) � 5. (If you want to really show o¤, you
can prove that if the planar graph G has at least four vertices, then G has at least four vertices
of degree at most 5.)

Problem 84 (Heawood,1890) Let G be any planar graph. Prove �(G) � 5.

Having accomplished the goal of this section, we now focus attention on knowing when a
graph is planar.

3.2 Planar Graphs

The homeomorphic operation applied to the graph G (denoted HO(G)) is the replacement
of any edge, say uv, of G with the path u;w; v where w was not originally a vertex of G. (One
can think of producing a new graph, say H, from G by plunking the new vertex w right smack
down into the middle of the edge uv.) Any graph, again say H, produced by a series HO(HO ...
(HO(G)) ... ) of n � 0 homeomorphic operations is said to be homeomorphic from G. This
is denoted by writing H hf ��G. (It is possible that n = 0 because it is desired that graphs be
homeomorphic from themselves.) It should be clear that H is planar if and only if G is planar,
given that H hf ��G.

Problem 85 Suppose that H hf ��G and p(H) = p(G). Prove H = G.

We say the graph H is homeomorphic with the graph G if and only if there exists some
graph F such that H hf ��F and G hf ��F . This situation is denoted by H hw �!G. Be careful
when speaking and writing. There is a di¤erence between saying �homeomorphic from� and
saying �homeomorphic with�. The next �ve problems help us to understand the nature of the
homeomorphic operation.

Problem 86 WICN Prove that graphs H and G exist such that H hw �!G while, at the same
time, is is not true that G hf ��H and it is also not true that H hf ��G.

Problem 87 Let G and H be graphs such that H hf ��G. Can it be true that �(G) = �(H)?

What about �(G) < �(H) and �(G) > �(H)? Give examples.

Problem 88 Let F hw �!H and let H hw �!G. Prove that there is a graph E such that F hf ��E
and G hf ��E.
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Problem 89 Let G be any non-empty collection of graphs. De�ne the relation R on G by
(G;H) 2 R () G hw �!H. Prove that R is an equivalence relation on G.

Problem 90 Let G and R be as in the prior problem. Let G be any graph in G. Let [G]R be
the equivalence class of R that contains G. Prove that there is a unique graph in [G]R, say F ,
for which, given any graph H 2 [G]R, it holds that H hw �!F () H hf ��F .

Graphs like the graph F in the prior problem are called homeomorphically irreducible.
That is, when the graph F has the property that given any graph G, it holds that G hw �!F if
and only if G hf ��F , we call F homeomorphically irreducible. There is another way to think of
these special graphs.

Problem 91 Prove that the graph G is homeomorphically irreducible if and only if every vertex
of degree two in G lies on a K3 in G.

Note that this last problem implies that graphs whose minimum degree exceed two are
automatically homeomorphically irreducible. In particular, the graphs K5 and K(3;3) are in fact
homeomorphically irreducible.
Now that we better understand the concept of the homeomorphic operation, we now seek to

know how to decide whether or not a given graph is planar. The following three problems relate
directly to this issue.

Problem 92 Prove that K5 is not planar. (Hint, consider Euler�s formula: p� q + r = 2.)

Problem 93 Prove that K(3;3) is not planar. (Hint, consider Euler�s formula and the fact that
K3 is not a subgraph of K(3;3).)

Problem 94 It is obvious that the graph G is planar if and only if each component of G is
planar. Thus, consider the graph G to be connected. Prove that G is planar if and only if each
block of G is planar. (Hint, induct on the number of blocks of G.)

Well, here it comes. The �rst published solution to our current main problem of interest
was created by the Polish mathematician Kazimierz Kuratowski in 1930. It is because of his
accomplishment that Frank Harary (the father of modern graph theory) chose (in the mid-1950�s
in Ann Arbor, Michigan) to use the letter �K�(for Kazimierz) in the denotation of complete
graphs and the letter �K�(for Kuratowski) in the denotation of complete multi-partite graphs.
(At least that is what Frank Harary told the author of this text in 1975 in Kalamazoo, Michigan.)
It is remarkable that the determination of planarity should be so simple. (Actually, Kuratowski,
when starting his proof thought that the only impediment to planarity was K5. The discovery
that K(3;3) also played a role came about as Kuratowski was creating his proof.)

Problem 95 The graph G is planar if and only if G contains no subgraph homeomorphic from
either K5 or K(3;3).

In truth, when one encounters Kuratowski�s Theorem in the literature of graph theory,
the word �with� is usually used instead of the word �from�. Since K5 and K(3;3) are each
homeomorphically irreducible, one wonders why that is the way it is done. In any case, our
work in this section has been accomplished. We now move on to consider the most famous
graph in all of graph theory.
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3.3 The Petersen Graph

The Petersen Graph, shown below, is arguably the most famous graph in all of graph theory.

v1 v10

v9v8
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v5

v4 v3

v2

The Petersen Graph

This graph gets its name in honor of J. P. C. Petersen who presented it as an example of
a cubic bridgeless graph (with a certain other property) in an 1898 paper. It turns out that
the Petersen Graph possesses many remarkable properties. The following problem presents an
example. Just by looking, one would surely think that some subgraph of the Petersen Graph
could be found that is homeomorphic from K5. Good luck with that idea.

Problem 96 Let G be the Petersen Graph. Prove that G is not planar. Also, prove that G has
no subgraph homeomorphic from K5.

The problem just above leads to another theory of planarity involving �contractions�. A
contraction involves �shrinking�an edge so that it disappears and its end-vertices become one
big vertex incident with all edges originally adjacent with the �shrunken�edge. Yes, a series of
contractions of the Petersen Graph will produce a K5. There is a Theorem that states that any
graph G is planar if and only if G contains no subgraph that can contract to either K5 or K(3;3).
Guess what? The Petersen Graph cannot contract to K(3;3). (Can you prove this?)

3.4 Traceable Graphs

We have saved the �rst for last. That is we have reached our last section. It discusses what is
regarded to be the �rst theorem of graph theory. Leonhard Euler, in 1736, published a result
that solved a conundrum concerning the traversing of seven (real-world, not graph-theoretic)
bridges connecting four land masses in the city of Königsberg (today called Kaliningrad) in
Eastern Prussia. In his mind, Euler converted the land masses to vertices and the bridges to
edges, then he solved the problem. His published solution is the �rst known usage of graph-
theoretical thinking. Euler was regarded as a non-pompous and kind man. There is no way
he would name anything after himself. What follows is the modern terminology for what Euler
described.
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In today�s language, an eulerian trail of a connected graph G is a (necessarily open) trail
that contains all of the edges of G. Similarly, an eulerian circuit of G is a circuit that contains
all the edges of G. A graph G can be traced if and only if G contains either an eulerian trail
or an eulerian circuit. The idea is that by following the walk given by the trail or circuit, one is
tracing the graph. A traceable graph is a graph that can be traced. The next �ve problems
tell us exactly when a graph is a traceable graph.

Problem 97 WICN Let G be a traceable graph. Prove that G is connected.

Problem 98 Let G contain an eulerian circuit. Prove every vertex of G is even.

Problem 99 Let G contain an eulerian trail. Prove that the initial and terminal vertices of the
trail are odd. Prove that the remaining vertices of G are even.

Problem 100 Let G be a connected graph having only even vertices. Prove that G contains an
eulerian circuit.

Problem 101 Let G be a connected graph having exactly two odd vertices. Prove G contains
an eulerian trail. Further, prove that the initial and the terminal vertices of the trail are the odd
vertices of G.

Well, there you have it. The result discovered by Euler is: the graph G is traceable if and
only if G is connected and has two or fewer odd vertices. (What happened to the case of exactly
one odd vertex?) Note that when G has exactly two odd vertices, we know something about
where to start the tracing of G that might not be obvious to a non-graph theorist. However, we
must be careful in our assumptions about untrained people. This author has seen clever young
people create good proofs of the �only if�portion of Euler�s result. Yes, the �if�part is a bit
harder. In fact, Euler himself did not give a proof of the �if� portion. (Perhaps he thought
it was obvious.) That proof appeared in print in 1873 by C. Wiener as he and his colleague
Lüroth, for the purpose of creating a memorial, reconstructed from memory a proof given to
them by a young German mathematician, Carl Hierholzer, who died in 1871.
One �nal note. In truth, due to the layout of the bridges in Königsberg, Euler�s original

solution gave rise to a multigraph. (A multigraph is similar to a graph but allows for any �nite
number of edges between a given pair of vertices.) Euler�s result does also hold for any kind
of multigraph, with or without loops. (A loop is a cycle of length one.) Note that any one of
these non-standard structures can be turned into a graph with the application of a sequence of
homeomorphic operations. The original structure is traceable if and only if the graph so created
is traceable.
For more on the history of the Königsberg Bridge Problem, and graph theory itself, seek

out and read Graph Theory:1736-1936 by Biggs, Lloyd, and Wilson. The author�s copy was
published in 1976 by Clarendon Press, Oxford, England. Inside, opposite the Preface, the code
ISBN 0 19 853901 0 is written. This book is a �must read�for graph theorists.

End of Section Three
End of course, of course.

James M. Benedict
Augusta State University
December 20, 2005
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distance between u and v, d(u; v), 10
distance from u to v, d(u; v), 10

e is incident to (or with) u, 3
e1 is adjacent to (or with) e2, 3
edge, uv, vu, 1
edge set, E, E(G) , 1
edge-induced, 7
edges, 1
embedded in the surface, 3
end-block of G, 12
end-vertex, 4
end-vertices of W , 9
equality of graphs, G1 = G2, 3
eulerian circuit, 19
eulerian trail, 19
even vertex, 4

graph, G, G = (V;E), (V;E), 1
graphical sequence of integers, 4

homeomorphic from, H hf
 � G, 16

homeomorphic with, H hw
 ! G, 16

homeomorphically irreducible, 17

induced subgraph, 6
initial vertex of W , 9
isolated vertex, 4
isomorphism from G1 to G2, 2
G1 is isomorphic to G2, 2
G1 is isomorphic with G2, 2

length of a walk, 9

max degree of G, �(G), 4
min degree of G, �(G), 4
minimal block, 13
multi-partite graph, 8

n-cycle, 9
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n-partite graph, 8
n-regular, 5
nontrivial graph, 10

odd vertex, 4
order, p, p(G), 1

partite set of a graph, 8
path, Pn, 9
Petersen Graph, 18
planar graph, 15
plane graph, 15
proper coloring of a map, 14

regular graph, 5
rendering of a graph, 1

self-complementary graph, G = G, 8
size, q, q(G), 1
spanning subgraph of H, 6
star graph, K(1; n), 8
subgraph, G � H, 6
subgraph induced by X, �X�, 6
supergraph, H � G, 6

terminal vertex of W , 9
traceable graph, 19
G can be traced, 19
trail, 9
trivial graph, 10

u is adjacent to (or with) v, 3
u is incident to (or with) e, 3

vertex, 1
vertex set, V , V (G), 1
vertex-disjoint paths, 12
vertex-induced subgraph, 6
vertices, 1

walk in G, 9

Symbols, 19
G+ uv, G+ e, 6
�(G), 15
G, 7
Kp, 5
K (p1; p2; :::pn), 8
c(G), 10
Cn, 9
degG(v), deg(v), 4
G� v, 6
G� e, 6
G�X, 6
D, D = (V;R), (V;R) , 1
d(u; v), 10
uv, vu, 1
E, E(G) , 1
e = uv, 3
G1 = G2, 3
G, G = (V;E), (V;E), 1
H hf
 � G, 16

H hw
 ! G, 16

�(G), 4
�(G), 4
p, p(G), 1
Pn, 9
(p; q)-graph, 1
G = G, 8
q, q(G) , 1
q, 8
K(1; n), 8
G � H, 6
�X�, 6
H � G, 6
G [H, 8
V , V (G), 1
V = fv1; v2; :::vpg, 3
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