Exam 4 Calc 1 12/7/2012

Each problem is worth 10 points. For full credit provide complete justification for your answers.

1. Evaluate $\int_{1}^{3} x^{2} d x$.
2. Find the average value of $f(x)=\sin x$ on the interval $[0, \pi]$.
3. If you use a left-hand sum with $n=4$ subdivisions to approximate $\int_{1}^{5} \frac{1}{x} d x$, what are:

$$
\begin{aligned}
& \Delta x= \\
& \bar{x}_{1}= \\
& \bar{x}_{2}= \\
& \bar{x}_{3}= \\
& \bar{x}_{4}= \\
& f\left(\bar{x}_{1}\right)= \\
& f\left(\bar{x}_{2}\right)= \\
& f\left(\bar{x}_{3}\right)= \\
& f\left(\bar{x}_{4}\right)= \\
& \sum_{k=1}^{4} f\left(\bar{x}_{k}\right) \cdot \Delta x=
\end{aligned}
$$

4. For the function $f(x)$ whose graph is shown below, find
a) $\int_{0}^{2} f(x) d x$
b) $\int_{0}^{6} f(x) d x$

5. Evaluate $\int \frac{x}{\sqrt{9-x^{2}}} d x$.
6. Suppose $\int_{0}^{2} f(x) d x=5, \int_{2}^{5} f(x) d x=-1, \int_{0}^{2} g(x) d x=7$, and $\int_{2}^{5} g(x) d x=2$.
a) Evaluate $\int_{0}^{2} 3 f(x) d x$.
b) Evaluate $\int_{0}^{5} f(x) d x$.
c) Evaluate $\int_{2}^{5}[f(x)-g(x)] d x$.
7. a) Evaluate $\frac{d}{d x} \int_{0}^{x} \frac{1}{1+t^{3}} d t$.
b) Evaluate $\frac{d}{d x} \int_{0}^{5 x} \frac{1}{1+t^{3}} d t$.
8. The first edition of the Cliff'sNotes Calculus Quick Review says on page 116 that the area A of the region bounded by the graph of $f(x)$, the x axis, and the lines $x=a$ and $x=b$ is given by $\left|\int_{a}^{b} f(x) d x\right|$ when the function $f(x)$ is sometimes above and sometimes below the x-axis.
Explain in at least a few sentences why the absolute value bars in this expression do or don't accurately express the actual area bounded by these curves.
9. Find the area of the regions above $y=1$ but below $y=2 \sin (3 x)$ between $x=0$ and $x=2 \pi$.

10. Evaluate $\int_{0}^{5}(x+1) \sqrt{25-x^{2}} d x$.

Extra Credit (5 points possible):
Find the value of c such that the areas of the two regions shown between $y=c$ and $y=x^{2}-3 x^{3}$ (but to the right of $x=0$) are equal.

